Bedeer, Ebrahim
UAV Trajectory Planning for AoI-Minimal Data Collection in UAV-Aided IoT Networks by Transformer
Zhu, Botao, Bedeer, Ebrahim, Nguyen, Ha H., Barton, Robert, Gao, Zhen
Maintaining freshness of data collection in Internet-of-Things (IoT) networks has attracted increasing attention. By taking into account age-of-information (AoI), we investigate the trajectory planning problem of an unmanned aerial vehicle (UAV) that is used to aid a cluster-based IoT network. An optimization problem is formulated to minimize the total AoI of the collected data by the UAV from the ground IoT network. Since the total AoI of the IoT network depends on the flight time of the UAV and the data collection time at hovering points, we jointly optimize the selection of hovering points and the visiting order to these points. We exploit the state-of-the-art transformer and the weighted A*, which is a path search algorithm, to design a machine learning algorithm to solve the formulated problem. The whole UAV-IoT system is fed into the encoder network of the proposed algorithm, and the algorithm's decoder network outputs the visiting order to ground clusters. Then, the weighted A* is used to find the hovering point for each cluster in the ground IoT network. Simulation results show that the trained model by the proposed algorithm has a good generalization ability to generate solutions for IoT networks with different numbers of ground clusters, without the need to retrain the model. Furthermore, results show that our proposed algorithm can find better UAV trajectories with the minimum total AoI when compared to other algorithms.
Sample-Driven Federated Learning for Energy-Efficient and Real-Time IoT Sensing
Luu, Minh Ngoc, Nguyen, Minh-Duong, Bedeer, Ebrahim, Nguyen, Van Duc, Hoang, Dinh Thai, Nguyen, Diep N., Pham, Quoc-Viet
In the domain of Federated Learning (FL) systems, recent cutting-edge methods heavily rely on ideal conditions convergence analysis. Specifically, these approaches assume that the training datasets on IoT devices possess similar attributes to the global data distribution. However, this approach fails to capture the full spectrum of data characteristics in real-time sensing FL systems. In order to overcome this limitation, we suggest a new approach system specifically designed for IoT networks with real-time sensing capabilities. Our approach takes into account the generalization gap due to the user's data sampling process. By effectively controlling this sampling process, we can mitigate the overfitting issue and improve overall accuracy. In particular, We first formulate an optimization problem that harnesses the sampling process to concurrently reduce overfitting while maximizing accuracy. In pursuit of this objective, our surrogate optimization problem is adept at handling energy efficiency while optimizing the accuracy with high generalization. To solve the optimization problem with high complexity, we introduce an online reinforcement learning algorithm, named Sample-driven Control for Federated Learning (SCFL) built on the Soft Actor-Critic (A2C) framework. This enables the agent to dynamically adapt and find the global optima even in changing environments. By leveraging the capabilities of SCFL, our system offers a promising solution for resource allocation in FL systems with real-time sensing capabilities.