Becker-Reshef, Inbal
How accurate are existing land cover maps for agriculture in Sub-Saharan Africa?
Kerner, Hannah, Nakalembe, Catherine, Yang, Adam, Zvonkov, Ivan, McWeeny, Ryan, Tseng, Gabriel, Becker-Reshef, Inbal
Satellite Earth observations (EO) can provide affordable and timely information for assessing crop conditions and food production. Such monitoring systems are essential in Africa, where there is high food insecurity and sparse agricultural statistics. EO-based monitoring systems require accurate cropland maps to provide information about croplands, but there is a lack of data to determine which of the many available land cover maps most accurately identify cropland in African countries. This study provides a quantitative evaluation and intercomparison of 11 publicly available land cover maps to assess their suitability for cropland classification and EO-based agriculture monitoring in Africa using statistically rigorous reference datasets from 8 countries. We hope the results of this study will help users determine the most suitable map for their needs and encourage future work to focus on resolving inconsistencies between maps and improving accuracy in low-accuracy regions.
Improve State-Level Wheat Yield Forecasts in Kazakhstan on GEOGLAM's EO Data by Leveraging A Simple Spatial-Aware Technique
Nhu, Anh Nhat, Sahajpal, Ritvik, Justice, Christina, Becker-Reshef, Inbal
Accurate yield forecasting is essential for making informed policies and long-term decisions for food security. Earth Observation (EO) data and machine learning algorithms play a key role in providing a comprehensive and timely view of crop conditions from field to national scales. However, machine learning algorithms' prediction accuracy is often harmed by spatial heterogeneity caused by exogenous factors not reflected in remote sensing data, such as differences in crop management strategies. In this paper, we propose and investigate a simple technique called state-wise additive bias to explicitly address the cross-region yield heterogeneity in Kazakhstan. Compared to baseline machine learning models (Random Forest, CatBoost, XGBoost), our method reduces the overall RMSE by 8.9\% and the highest state-wise RMSE by 28.37\%. The effectiveness of state-wise additive bias indicates machine learning's performance can be significantly improved by explicitly addressing the spatial heterogeneity, motivating future work on spatial-aware machine learning algorithms for yield forecasts as well as for general geospatial forecasting problems.