Bazhenov, Maxim
Bridge Networks
Olin-Ammentorp, Wilkie, Bazhenov, Maxim
Despite rapid progress, current deep learning methods face a number of critical challenges. These include high energy consumption, catastrophic forgetting, dependance on global losses, and an inability to reason symbolically. By combining concepts from information bottleneck theory and vector-symbolic architectures, we propose and implement a novel information processing architecture, the 'Bridge network.' We show this architecture provides unique advantages which can address the problem of global losses and catastrophic forgetting. Furthermore, we argue that it provides a further basis for increasing energy efficiency of execution and the ability to reason symbolically.
Replay in Deep Learning: Current Approaches and Missing Biological Elements
Hayes, Tyler L., Krishnan, Giri P., Bazhenov, Maxim, Siegelmann, Hava T., Sejnowski, Terrence J., Kanan, Christopher
Replay is the reactivation of one or more neural patterns, which are similar to the activation patterns experienced during past waking experiences. Replay was first observed in biological neural networks during sleep, and it is now thought to play a critical role in memory formation, retrieval, and consolidation. Replay-like mechanisms have been incorporated into deep artificial neural networks that learn over time to avoid catastrophic forgetting of previous knowledge. Replay algorithms have been successfully used in a wide range of deep learning methods within supervised, unsupervised, and reinforcement learning paradigms. In this paper, we provide the first comprehensive comparison between replay in the mammalian brain and replay in artificial neural networks. We identify multiple aspects of biological replay that are missing in deep learning systems and hypothesize how they could be utilized to improve artificial neural networks.
A Dual-Memory Architecture for Reinforcement Learning on Neuromorphic Platforms
Olin-Ammentorp, Wilkie, Sokolov, Yury, Bazhenov, Maxim
Reinforcement learning (RL) is a foundation of learning in biological systems and provides a framework to address numerous challenges with real-world artificial intelligence applications. Efficient implementations of RL techniques could allow for agents deployed in edge-use cases to gain novel abilities, such as improved navigation, understanding complex situations and critical decision making. Towards this goal, we describe a flexible architecture to carry out reinforcement learning on neuromorphic platforms. This architecture was implemented using an Intel neuromorphic processor and demonstrated solving a variety of tasks using spiking dynamics. Our study proposes a usable energy efficient solution for real-world RL applications and demonstrates applicability of the neuromorphic platforms for RL problems.