Baumann, Timo
Controlled Diversity: Length-optimized Natural Language Generation
Schenke, Diana Marie, Baumann, Timo
LLMs are not generally able to adjust the length of their outputs based on strict length requirements, a capability that would improve their usefulness in applications that require adherence to diverse user and system requirements. We present an approach to train LLMs to acquire this capability by augmenting existing data and applying existing fine-tuning techniques, which we compare based on the trained models' adherence to the length requirement and overall response quality relative to the baseline model. Our results demonstrate that these techniques can be successfully applied to train LLMs to adhere to length requirements, with the trained models generating texts which better align to the length requirements. Our results indicate that our method may change the response quality when using training data that was not generated by the baseline model. This allows simultaneous alignment to another training objective in certain scenarios, but is undesirable otherwise. Training on a dataset containing the model's own responses eliminates this issue.
Improving Domain-independent Cloud-Based Speech Recognition with Domain-Dependent Phonetic Post-Processing
Twiefel, Johannes (University of Hamburg) | Baumann, Timo (University of Hamburg) | Heinrich, Stefan (University of Hamburg) | Wermter, Stefan (University of Hamburg)
Automatic speech recognition (ASR) technology has been developed to such a level that off-the-shelf distributed speech recognition services are available (free of cost), which allow researchers to integrate speech into their applications with little development effort or expert knowledge leading to better results compared with previously used open-source tools. Often, however, such services do not accept language models or grammars but process free speech from any domain. While results are very good given the enormous size of the search space, results frequently contain out-of-domain words or constructs that cannot be understood by subsequent domain-dependent natural language understanding (NLU) components. We present a versatile post-processing technique based on phonetic distance that integrates domain knowledge with open-domain ASR results, leading to improved ASR performance. Notably, our technique is able to make use of domain restrictions using various degrees of domain knowledge, ranging from pure vocabulary restrictions via grammars or N-Grams to restrictions of the acceptable utterances. We present results for a variety of corpora (mainly from human-robot interaction) where our combined approach significantly outperforms Google ASR as well as a plain open-source ASR solution.