Bauer, Emmanuel
Legal Extractive Summarization of U.S. Court Opinions
Bauer, Emmanuel, Stammbach, Dominik, Gu, Nianlong, Ash, Elliott
This paper tackles the task of legal extractive summarization using a dataset of 430K U.S. court opinions with key passages annotated. According to automated summary quality metrics, the reinforcement-learning-based MemSum model is best and even out-performs transformer-based models. In turn, expert human evaluation shows that MemSum summaries effectively capture the key points of lengthy court opinions. Motivated by these results, we open-source our models to the general public. This represents progress towards democratizing law and making U.S. court opinions more accessible to the general public.