Baths, Veeky
LLaVA Finds Free Lunch: Teaching Human Behavior Improves Content Understanding Abilities Of LLMs
Singh, Somesh, S, Harini I, Singla, Yaman K, Baths, Veeky, Shah, Rajiv Ratn, Chen, Changyou, Krishnamurthy, Balaji
Communication is defined as "Who says what to whom with what effect." A message from a communicator generates downstream receiver effects, also known as behavior. Receiver behavior, being a downstream effect of the message, carries rich signals about it. Even after carrying signals about the message, the behavior data is often ignored while training large language models. We show that training LLMs on receiver behavior can actually help improve their content-understanding abilities. Specifically, we show that training LLMs to predict the receiver behavior of likes and comments improves the LLM's performance on a wide variety of downstream content understanding tasks. We show this performance increase over 40 video and image understanding tasks over 23 benchmark datasets across both 0-shot and fine-tuning settings, outperforming many supervised baselines. Moreover, since receiver behavior, such as likes and comments, is collected by default on the internet and does not need any human annotations to be useful, the performance improvement we get after training on this data is essentially free-lunch. We release the receiver behavior cleaned comments and likes of 750k images and videos collected from multiple platforms along with our instruction-tuning data.
Continuous Time Continuous Space Homeostatic Reinforcement Learning (CTCS-HRRL) : Towards Biological Self-Autonomous Agent
Laurencon, Hugo, Bhargava, Yesoda, Zantye, Riddhi, Sรฉgerie, Charbel-Raphaรซl, Lussange, Johann, Baths, Veeky, Gutkin, Boris
Homeostasis is a biological process by which living beings maintain their internal balance. Previous research suggests that homeostasis is a learned behaviour. Recently introduced Homeostatic Regulated Reinforcement Learning (HRRL) framework attempts to explain this learned homeostatic behavior by linking Drive Reduction Theory and Reinforcement Learning. This linkage has been proven in the discrete time-space, but not in the continuous time-space. In this work, we advance the HRRL framework to a continuous time-space environment and validate the CTCS-HRRL (Continuous Time Continuous Space HRRL) framework. We achieve this by designing a model that mimics the homeostatic mechanisms in a real-world biological agent. This model uses the Hamilton-Jacobian Bellman Equation, and function approximation based on neural networks and Reinforcement Learning. Through a simulation-based experiment we demonstrate the efficacy of this model and uncover the evidence linked to the agent's ability to dynamically choose policies that favor homeostasis in a continuously changing internal-state milieu. Results of our experiments demonstrate that agent learns homeostatic behaviour in a CTCS environment, making CTCS-HRRL a promising framework for modellng animal dynamics and decision-making.
Long-Term Ad Memorability: Understanding and Generating Memorable Ads
S, Harini I, Singh, Somesh, Singla, Yaman K, Bhattacharyya, Aanisha, Baths, Veeky, Chen, Changyou, Shah, Rajiv Ratn, Krishnamurthy, Balaji
Marketers spend billions of dollars on advertisements but to what end? At the time of purchase, if customers cannot recognize the brand for which they saw an ad, the money spent on the ad is essentially wasted. Despite its importance in marketing, until now, there has been no study on the memorability of ads in the ML literature. Most studies have been conducted on short-term recall (<5 mins) on specific content types like object and action videos. On the other hand, the advertising industry only cares about long-term memorability, and ads are almost always highly multimodal, depicting a story through its different modalities. With this motivation, we release the first large-scale memorability dataset, LAMDBA, consisting of 1749 participants and 2205 ads covering 276 brands. Running statistical tests over different participant subpopulations and ad types, we find many interesting insights into what makes an ad memorable. For e.g., we find that brands that use commercials with fast-moving scenes are more memorable than those with slower scenes (p=8e-10) and that people who use ad-blockers remember fewer ads than those who don't (p=5e-3). Next, to simulate the memorability of marketing materials for a particular audience, we present a novel model, Henry, trained to leverage real-world knowledge of LLMs and visual knowledge to predict the memorability. We test Henry on all the prominent memorability datasets in literature (both images and videos) and achieve state-of-the-art performance across all of them. Henry shows strong generalization showing better results in 0-shot on unseen datasets. Next, we propose the task of memorable ad generation and release a large-scale ad dataset, UltraLAMBDA, consisting of 4 million ads with their Henry-assigned memorability scores. We show that aligning Henry to generate memorable content improves memorability scores by more than 25%.
Wheelchair automation by a hybrid BCI system using SSVEP and eye blinks
Kanungo, Lizy, Garg, Nikhil, Bhobe, Anish, Rajguru, Smit, Baths, Veeky
This work proposes a hybrid Brain Computer Interface system for the automation of a wheelchair for the disabled. Herein a working prototype of a BCI-based wheelchair is detailed that can navigate inside a typical home environment with minimum structural modification and without any visual obstruction and discomfort to the user. The prototype is based on a combined mechanism of steady-state visually evoked potential and eye blinks. To elicit SSVEP, LEDs flickering at 13Hz and 15Hz were used to select the left and right direction, respectively, and EEG data was recorded. In addition, the occurrence of three continuous blinks was used as an indicator for stopping an ongoing action. The wavelet packet denoising method was applied, followed by feature extraction methods such as Wavelet Packet Decomposition and Canonical Correlation Analysis over narrowband reconstructed EEG signals. Bayesian optimization was used to obtain 5 fold cross-validations to optimize the hyperparameters of the Support Vector Machine. The resulting new model was tested and the average cross-validation accuracy 89.65% + 6.6% (SD) and testing accuracy 83.53% + 8.59% (SD) were obtained. The wheelchair was controlled by RaspberryPi through WiFi. The developed prototype demonstrated an average of 86.97% success rate for all trials with 4.015s for each command execution. The prototype can be used efficiently in a home environment without causing any discomfort to the user.