Bathen, Luis Angel
Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence
Granite Vision Team, null, Karlinsky, Leonid, Arbelle, Assaf, Daniels, Abraham, Nassar, Ahmed, Alfassi, Amit, Wu, Bo, Schwartz, Eli, Joshi, Dhiraj, Kondic, Jovana, Shabtay, Nimrod, Li, Pengyuan, Herzig, Roei, Abedin, Shafiq, Perek, Shaked, Harary, Sivan, Barzelay, Udi, Goldfarb, Adi Raz, Oliva, Aude, Wieles, Ben, Bhattacharjee, Bishwaranjan, Huang, Brandon, Auer, Christoph, Gutfreund, Dan, Beymer, David, Wood, David, Kuehne, Hilde, Hansen, Jacob, Shtok, Joseph, Wong, Ken, Bathen, Luis Angel, Mishra, Mayank, Lysak, Maksym, Dolfi, Michele, Yurochkin, Mikhail, Livathinos, Nikolaos, Harel, Nimrod, Azulai, Ophir, Naparstek, Oshri, de Lima, Rafael Teixeira, Panda, Rameswar, Doveh, Sivan, Gupta, Shubham, Das, Subhro, Zawad, Syed, Kim, Yusik, He, Zexue, Brooks, Alexander, Goodhart, Gabe, Govindjee, Anita, Leist, Derek, Ibrahim, Ibrahim, Soffer, Aya, Cox, David, Soule, Kate, Lastras, Luis, Desai, Nirmit, Ofek-koifman, Shila, Raghavan, Sriram, Syeda-Mahmood, Tanveer, Staar, Peter, Drory, Tal, Feris, Rogerio
Ensuring the safety of generative MLLMs is absolutely crucial in order to prevent harm, build trust, address ethical concerns, and enable their responsible deployment in real-world applications. Our results demonstrate that Granite Vision performs almost at par with baselines (despite being the lightest MLLM in the comparison pool) for VLM-as-a-Judge task. Notably, the addition of Safety Vectors to Granite Vision leads to a significant improvement in safety classification performance. We do acknowledge that further work needs to be done to improve high-level reasoning and correct occasional incorrect outputs to improve reliability in sensitive tasks, which require nuanced classification. To address these, we will incorporate more reasoning-focused and structure-related data into the training process in the future. In addition, we showed in this paper that finding safety vectors (SVs) in Granite Vision's attention heads led to significant improvements when safety tasks were reformulated as classification problems. Current reliance for SVs is on few-shot samples which are informative but may have limited scope in terms of capturing the range of possible safety issues that can be encountered. To further improve the model's ability to identify and address all safety concerns, we plan to investigate scaling up SVs using more training data in future research.
Transfer-Once-For-All: AI Model Optimization for Edge
Kundu, Achintya, Wynter, Laura, Lee, Rhui Dih, Bathen, Luis Angel
Weight-sharing neural architecture search aims to optimize a configurable neural network model (supernet) for a variety of deployment scenarios across many devices with different resource constraints. Existing approaches use evolutionary search to extract models of different sizes from a supernet trained on a very large data set, and then fine-tune the extracted models on the typically small, real-world data set of interest. The computational cost of training thus grows linearly with the number of different model deployment scenarios. Hence, we propose Transfer-Once-For-All (TOFA) for supernet-style training on small data sets with constant computational training cost over any number of edge deployment scenarios. Given a task, TOFA obtains custom neural networks, both the topology and the weights, optimized for any number of edge deployment scenarios. To overcome the challenges arising from small data, TOFA utilizes a unified semi-supervised training loss to simultaneously train all subnets within the supernet, coupled with on-the-fly architecture selection at deployment time.