Bate, Andrew
PVLens: Enhancing Pharmacovigilance Through Automated Label Extraction
Painter, Jeffery L, Powell, Gregory E, Bate, Andrew
Reliable drug safety reference databases are essential for pharmacovigilance, yet existing resources like SIDER are outdated and static. We introduce PVLens, an automated system that extracts labeled safety information from FDA Structured Product Labels (SPLs) and maps terms to MedDRA. In validation against 97 drug labels, PVLens achieved an F1 score of 0.882, with high recall (0.983) and moderate precision (0.799). By offering a scalable, more accurate and continuously updated alternative to SIDER, PVLens enhances real-time pharamcovigilance with improved accuracy and contemporaneous insights. Keywords: Pharmacovigilance, Natural Language Processing (NLP), Drug Safety, ADR 1 Introduction A clear understanding of known adverse effects, along with continuous surveillance for emerging safety concerns, is essential for patients, healthcare professionals, and pharmacovigilance (PV) scientists.
Bridging the Gap in Drug Safety Data Analysis: Large Language Models for SQL Query Generation
Painter, Jeffery L., Chalamalasetti, Venkateswara Rao, Kassekert, Raymond, Bate, Andrew
Pharmacovigilance (PV) is essential for drug safety, primarily focusing on adverse event monitoring. Traditionally, accessing safety data required database expertise, limiting broader use. This paper introduces a novel application of Large Language Models (LLMs) to democratize database access for non-technical users. Utilizing OpenAI's GPT-4, we developed a chatbot that generates structured query language (SQL) queries from natural language, bridging the gap between domain knowledge and technical requirements. The proposed application aims for more inclusive and efficient data access, enhancing decision making in drug safety. By providing LLMs with plain language summaries of expert knowledge, our approach significantly improves query accuracy over methods relying solely on database schemas. The application of LLMs in this context not only optimizes PV data analysis, ensuring timely and precise drug safety reporting -- a crucial component in adverse drug reaction monitoring -- but also promotes safer pharmacological practices and informed decision making across various data intensive fields.
Consequence-Based Reasoning for Description Logics with Disjunctions and Number Restrictions
Bate, Andrew, Motik, Boris, Cuenca Grau, Bernardo, Tena Cucala, David, Simančík, František, Horrocks, Ian
Classification of description logic (DL) ontologies is a key computational problem in modern data management applications, so considerable effort has been devoted to the development and optimisation of practical reasoning calculi. Consequence-based calculi combine ideas from hypertableau and resolution in a way that has proved very effective in practice. However, existing consequence-based calculi can handle either Horn DLs (which do not support disjunction) or DLs without number restrictions. In this paper, we overcome this important limitation and present the first consequence-based calculus for deciding concept subsumption in the DL ALCHIQ+. Our calculus runs in exponential time assuming unary coding of numbers, and on ELH ontologies it runs in polynomial time. The extension to disjunctions and number restrictions is technically involved: we capture the relevant consequences using first-order clauses, and our inference rules adapt paramodulation techniques from first-order theorem proving. By using a well-known preprocessing step, the calculus can also decide concept subsumptions in SRIQ---a rich DL that covers all features of OWL 2 DL apart from nominals and datatypes. We have implemented our calculus in a new reasoner called Sequoia. We present the architecture of our reasoner and discuss several novel and important implementation techniques such as clause indexing and redundancy elimination. Finally, we present the results of an extensive performance evaluation, which revealed Sequoia to be competitive with existing reasoners. Thus, the calculus and the techniques we present in this paper provide an important addition to the repertoire of practical implementation techniques for description logic reasoning.