Batchu, Vishal
Agricultural Landscape Understanding At Country-Scale
Dua, Radhika, Saxena, Nikita, Agarwal, Aditi, Wilson, Alex, Singh, Gaurav, Tran, Hoang, Deshpande, Ishan, Kaur, Amandeep, Aggarwal, Gaurav, Nath, Chandan, Basu, Arnab, Batchu, Vishal, Holla, Sharath, Kurle, Bindiya, Missura, Olana, Aggarwal, Rahul, Garg, Shubhika, Shah, Nishi, Singh, Avneet, Tewari, Dinesh, Dondzik, Agata, Adsul, Bharat, Sohoni, Milind, Praveen, Asim Rama, Dangi, Aaryan, Kadivar, Lisan, Abhishek, E, Sudhansu, Niranjan, Hattekar, Kamlakar, Datar, Sameer, Chaithanya, Musty Krishna, Reddy, Anumas Ranjith, Kumar, Aashish, Tirumala, Betala Laxmi, Talekar, Alok
The global food system is facing unprecedented challenges. In 2023, 2.4 billion people experienced moderate to severe food insecurity [1], a crisis precipitated by anthropogenic climate change and evolving dietary preferences. Furthermore, the food system itself significantly contributes to the climate crisis, with food loss and waste accounting for 2.4 gigatonnes of carbon dioxide equivalent emissions per year (GT CO2e/yr) [2], and the production, mismanagement, and misapplication of agricultural inputs such as fertilizers and manure generating an additional 2.5 GT CO2e/yr [3]. To sustain a projected global population of 9.6 billion by 2050, the Food and Agriculture Organization (FAO) estimates that food production must increase by at least 60% [1]. However, this also presents an opportunity: transitioning to sustainable agricultural practices can transform the sector from a net source of greenhouse gas emissions to a vital carbon sink.
A Machine Learning Data Fusion Model for Soil Moisture Retrieval
Batchu, Vishal, Nearing, Grey, Gulshan, Varun
Soil moisture is one of the primary hydrological state (memory) variables in terrestrial systems (Dobriyal et al. 2012; Rossato et al. 2017a), and is one of the primary controls for agriculture and water management (Dobriyal et al. 2012; Rossato et al. 2017b). Soil moisture affects evapotranspiration and vegetation water availability, which are at the core of the climate-carbon cycle (Falloon et al. 2011) and play an important role in hydrological risks such as floods, drought, erosion, and landslides (Kim et al. 2019; Legates et al. 2011; Tramblay et al. 2012). Accurate measurement of soil moisture has numerous downstream benefits (Moran et al. 2015) including reduced water wastage by better understanding and managing the consumption of water (Brocca et al. 2018; Foster, Mieno, and Brozović 2020), utilising smarter irrigation methods (Kumar et al. 2014) and effective canal water management (Zafar, Prathapar, and Bastiaanssen 2021). The most accurate way to measure soil moisture is via ground-based methods such as direct gravimetric measurements (Klute 1986) or indirect methods such as dielectric reflectometry, capacitance charge, etc. (Bittelli 2011), which in-situ sensors utilize (Walker, Willgoose, and Kalma 2004). However, in-situ sensors are difficult to scale spatially, and are expensive to install and maintain.
Cross Modal Distillation for Flood Extent Mapping
Garg, Shubhika, Feinstein, Ben, Timnat, Shahar, Batchu, Vishal, Dror, Gideon, Rosenthal, Adi Gerzi, Gulshan, Varun
The increasing intensity and frequency of floods is one of the many consequences of our changing climate. In this work, we explore ML techniques that improve the flood detection module of an operational early flood warning system. Our method exploits an unlabelled dataset of paired multi-spectral and Synthetic Aperture Radar (SAR) imagery to reduce the labeling requirements of a purely supervised learning method. Prior works have used unlabelled data by creating weak labels out of them. However, from our experiments we noticed that such a model still ends up learning the label mistakes in those weak labels. Motivated by knowledge distillation and semi supervised learning, we explore the use of a teacher to train a student with the help of a small hand labelled dataset and a large unlabelled dataset. Unlike the conventional self distillation setup, we propose a cross modal distillation framework that transfers supervision from a teacher trained on richer modality (multi-spectral images) to a student model trained on SAR imagery. The trained models are then tested on the Sen1Floods11 dataset. Our model outperforms the Sen1Floods11 baseline model trained on the weak labeled SAR imagery by an absolute margin of 6.53% Intersection-over-Union (IoU) on the test split.