Goto

Collaborating Authors

 Bassan, Shahaf


Self-Explaining Neural Networks for Business Process Monitoring

arXiv.org Artificial Intelligence

Tasks in Predictive Business Process Monitoring (PBPM), such as Next Activity Prediction, focus on generating useful business predictions from historical case logs. Recently, Deep Learning methods, particularly sequence-to-sequence models like Long Short-Term Memory (LSTM), have become a dominant approach for tackling these tasks. However, to enhance model transparency, build trust in the predictions, and gain a deeper understanding of business processes, it is crucial to explain the decisions made by these models. Existing explainability methods for PBPM decisions are typically *post-hoc*, meaning they provide explanations only after the model has been trained. Unfortunately, these post-hoc approaches have shown to face various challenges, including lack of faithfulness, high computational costs and a significant sensitivity to out-of-distribution samples. In this work, we introduce, to the best of our knowledge, the first *self-explaining neural network* architecture for predictive process monitoring. Our framework trains an LSTM model that not only provides predictions but also outputs a concise explanation for each prediction, while adapting the optimization objective to improve the reliability of the explanation. We first demonstrate that incorporating explainability into the training process does not hurt model performance, and in some cases, actually improves it. Additionally, we show that our method outperforms post-hoc approaches in terms of both the faithfulness of the generated explanations and substantial improvements in efficiency.


On the Computational Tractability of the (Many) Shapley Values

arXiv.org Artificial Intelligence

Recent studies have examined the computational complexity of computing Shapley additive explanations (also known as SHAP) across various models and distributions, revealing their tractability or intractability in different settings. However, these studies primarily focused on a specific variant called Conditional SHAP, though many other variants exist and address different limitations. In this work, we analyze the complexity of computing a much broader range of such variants, including Conditional, Interventional, and Baseline SHAP, while exploring both local and global computations. We show that both local and global Interventional and Baseline SHAP can be computed in polynomial time for various ML models under Hidden Markov Model distributions, extending popular algorithms such as TreeSHAP beyond empirical distributions. On the downside, we prove intractability results for these variants over a wide range of neural networks and tree ensembles. We believe that our results emphasize the intricate diversity of computing Shapley values, demonstrating how their complexity is substantially shaped by both the specific SHAP variant, the model type, and the distribution.


Explain Yourself, Briefly! Self-Explaining Neural Networks with Concise Sufficient Reasons

arXiv.org Artificial Intelligence

*Minimal sufficient reasons* represent a prevalent form of explanation - the smallest subset of input features which, when held constant at their corresponding values, ensure that the prediction remains unchanged. Previous *post-hoc* methods attempt to obtain such explanations but face two main limitations: (1) Obtaining these subsets poses a computational challenge, leading most scalable methods to converge towards suboptimal, less meaningful subsets; (2) These methods heavily rely on sampling out-of-distribution input assignments, potentially resulting in counterintuitive behaviors. To tackle these limitations, we propose in this work a self-supervised training approach, which we term *sufficient subset training* (SST). Using SST, we train models to generate concise sufficient reasons for their predictions as an integral part of their output. Our results indicate that our framework produces succinct and faithful subsets substantially more efficiently than competing post-hoc methods, while maintaining comparable predictive performance.


Local vs. Global Interpretability: A Computational Complexity Perspective

arXiv.org Artificial Intelligence

The local and global interpretability of various ML models has been studied extensively in recent years. However, despite significant progress in the field, many known results remain informal or lack sufficient mathematical rigor. We propose a framework for bridging this gap, by using computational complexity theory to assess local and global perspectives of interpreting ML models. We begin by proposing proofs for two novel insights that are essential for our analysis: (1) a duality between local and global forms of explanations; and (2) the inherent uniqueness of certain global explanation forms. We then use these insights to evaluate the complexity of computing explanations, across three model types representing the extremes of the interpretability spectrum: (1) linear models; (2) decision trees; and (3) neural networks. Our findings offer insights into both the local and global interpretability of these models. For instance, under standard complexity assumptions such as P != NP, we prove that selecting global sufficient subsets in linear models is computationally harder than selecting local subsets. Interestingly, with neural networks and decision trees, the opposite is true: it is harder to carry out this task locally than globally. We believe that our findings demonstrate how examining explainability through a computational complexity lens can help us develop a more rigorous grasp of the inherent interpretability of ML models.


Marabou 2.0: A Versatile Formal Analyzer of Neural Networks

arXiv.org Artificial Intelligence

This paper serves as a comprehensive system description of version 2.0 of the Marabou framework for formal analysis of neural networks. We discuss the tool's architectural design and highlight the major features and components introduced since its initial release.


Formally Explaining Neural Networks within Reactive Systems

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) are increasingly being used as controllers in reactive systems. However, DNNs are highly opaque, which renders it difficult to explain and justify their actions. To mitigate this issue, there has been a surge of interest in explainable AI (XAI) techniques, capable of pinpointing the input features that caused the DNN to act as it did. Existing XAI techniques typically face two limitations: (i) they are heuristic, and do not provide formal guarantees that the explanations are correct; and (ii) they often apply to ``one-shot'' systems, where the DNN is invoked independently of past invocations, as opposed to reactive systems. Here, we begin bridging this gap, and propose a formal DNN-verification-based XAI technique for reasoning about multi-step, reactive systems. We suggest methods for efficiently calculating succinct explanations, by exploiting the system's transition constraints in order to curtail the search space explored by the underlying verifier. We evaluate our approach on two popular benchmarks from the domain of automated navigation; and observe that our methods allow the efficient computation of minimal and minimum explanations, significantly outperforming the state of the art. We also demonstrate that our methods produce formal explanations that are more reliable than competing, non-verification-based XAI techniques.


Towards Formal XAI: Formally Approximate Minimal Explanations of Neural Networks

arXiv.org Artificial Intelligence

With the rapid growth of machine learning, deep neural networks (DNNs) are now being used in numerous domains. Unfortunately, DNNs are "black-boxes", and cannot be interpreted by humans, which is a substantial concern in safety-critical systems. To mitigate this issue, researchers have begun working on explainable AI (XAI) methods, which can identify a subset of input features that are the cause of a DNN's decision for a given input. Most existing techniques are heuristic, and cannot guarantee the correctness of the explanation provided. In contrast, recent and exciting attempts have shown that formal methods can be used to generate provably correct explanations. Although these methods are sound, the computational complexity of the underlying verification problem limits their scalability; and the explanations they produce might sometimes be overly complex. Here, we propose a novel approach to tackle these limitations. We (1) suggest an efficient, verification-based method for finding minimal explanations, which constitute a provable approximation of the global, minimum explanation; (2) show how DNN verification can assist in calculating lower and upper bounds on the optimal explanation; (3) propose heuristics that significantly improve the scalability of the verification process; and (4) suggest the use of bundles, which allows us to arrive at more succinct and interpretable explanations. Our evaluation shows that our approach significantly outperforms state-of-the-art techniques, and produces explanations that are more useful to humans. We thus regard this work as a step toward leveraging verification technology in producing DNNs that are more reliable and comprehensible.