Basevi, Hector
bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction
Liu, Yehe, Krull, Alexander, Basevi, Hector, Leonardis, Ales, Jenkins, Michael W.
Quanta image sensors, such as SPAD arrays, are an emerging sensor technology, producing 1-bit arrays representing photon detection events over exposures as short as a few nanoseconds. In practice, raw data are post-processed using heavy spatiotemporal binning to create more useful and interpretable images at the cost of degrading spatiotemporal resolution. In this work, we propose bit2bit, a new method for reconstructing high-quality image stacks at the original spatiotemporal resolution from sparse binary quanta image data. Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data by predicting the photon arrival location probability distribution. However, due to the binary nature of the data, we show that the assumption of a Poisson distribution is inadequate. Instead, we model the process with a Bernoulli lattice process from the truncated Poisson. This leads to the proposal of a novel self-supervised solution based on a masked loss function. We evaluate our method using both simulated and real data. On simulated data from a conventional video, we achieve 34.35 mean PSNR with extremely photon-sparse binary input (<0.06 photons per pixel per frame). We also present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions. The scenes cover strong/weak ambient light, strong motion, ultra-fast events, etc., which will be made available to the community, on which we demonstrate the promise of our approach. Both reconstruction quality and throughput substantially surpass the state-of-the-art methods (e.g., Quanta Burst Photography (QBP)). Our approach significantly enhances the visualization and usability of the data, enabling the application of existing analysis techniques.
Learning to Exploit Stability for 3D Scene Parsing
Du, Yilun, Liu, Zhijian, Basevi, Hector, Leonardis, Ales, Freeman, Bill, Tenenbaum, Josh, Wu, Jiajun
Human scene understanding uses a variety of visual and non-visual cues to perform inference on object types, poses, and relations. Physics is a rich and universal cue which we exploit to enhance scene understanding. We integrate the physical cue of stability into the learning process using a REINFORCE approach coupled to a physics engine, and apply this to the problem of producing the 3D bounding boxes and poses of objects in a scene. We first show that applying physics supervision to an existing scene understanding model increases performance, produces more stable predictions, and allows training to an equivalent performance level with fewer annotated training examples. We then present a novel architecture for 3D scene parsing named Prim R-CNN, learning to predict bounding boxes as well as their 3D size, translation, and rotation. With physics supervision, Prim R-CNN outperforms existing scene understanding approaches on this problem. Finally, we show that applying physics supervision on unlabeled real images improves real domain transfer of models training on synthetic data.