Bartz, Daniel
Cross-validation based Nonlinear Shrinkage
Bartz, Daniel
Many machine learning algorithms require precise estimates of covariance matrices. The sample covariance matrix performs poorly in high-dimensional settings, which has stimulated the development of alternative methods, the majority based on factor models and shrinkage. Recent work of Ledoit and Wolf has extended the shrinkage framework to Nonlinear Shrinkage (NLS), a more powerful covariance estimator based on Random Matrix Theory. Our contribution shows that, contrary to claims in the literature, cross-validation based covariance matrix estimation (CVC) yields comparable performance at strongly reduced complexity and runtime. On two real world data sets, we show that the CVC estimator yields superior results than competing shrinkage and factor based methods.
Covariance shrinkage for autocorrelated data
Bartz, Daniel, Müller, Klaus-Robert
The accurate estimation of covariance matrices is essential for many signal processing and machine learning algorithms. In high dimensional settings the sample covariance is known to perform poorly, hence regularization strategies such as analytic shrinkage of Ledoit/Wolf are applied. In the standard setting, i.i.d. data is assumed, however, in practice, time series typically exhibit strong autocorrelation structure, which introduces a pronounced estimation bias. Recent work by Sancetta has extended the shrinkage framework beyond i.i.d. data. We contribute in this work by showing that the Sancetta estimator, while being consistent in the high-dimensional limit, suffers from a high bias in finite sample sizes. We propose an alternative estimator, which is (1) unbiased, (2) less sensitive to hyperparameter choice and (3) yields superior performance in simulations on toy data and on a real world data set from an EEG-based Brain-Computer-Interfacing experiment.
Multi-Target Shrinkage
Bartz, Daniel, Höhne, Johannes, Müller, Klaus-Robert
Stein showed that the multivariate sample mean is outperformed by "shrinking" to a constant target vector. Ledoit and Wolf extended this approach to the sample covariance matrix and proposed a multiple of the identity as shrinkage target. In a general framework, independent of a specific estimator, we extend the shrinkage concept by allowing simultaneous shrinkage to a set of targets. Application scenarios include settings with (A) additional data sets from potentially similar distributions, (B) non-stationarity, (C) a natural grouping of the data or (D) multiple alternative estimators which could serve as targets. We show that this Multi-Target Shrinkage can be translated into a quadratic program and derive conditions under which the estimation of the shrinkage intensities yields optimal expected squared error in the limit. For the sample mean and the sample covariance as specific instances, we derive conditions under which the optimality of MTS is applicable. We consider two asymptotic settings: the large dimensional limit (LDL), where the dimensionality and the number of observations go to infinity at the same rate, and the finite observations large dimensional limit (FOLDL), where only the dimensionality goes to infinity while the number of observations remains constant. We then show the effectiveness in extensive simulations and on real world data.
Generalizing Analytic Shrinkage for Arbitrary Covariance Structures
Bartz, Daniel, Müller, Klaus-Robert
Analytic shrinkage is a statistical technique that offers a fast alternative to cross-validation for the regularization of covariance matrices and has appealing consistency properties. We show that the proof of consistency implies bounds on the growth rates of eigenvalues and their dispersion, which are often violated in data. We prove consistency under assumptions which do not restrict the covariance structure and therefore better match real world data. In addition, we propose an extension of analytic shrinkage --orthogonal complement shrinkage-- which adapts to the covariance structure. Finally we demonstrate the superior performance of our novel approach on data from the domains of finance, spoken letter and optical character recognition, and neuroscience.