Bartunov, Sergey
Equilibrium Aggregation: Encoding Sets via Optimization
Bartunov, Sergey, Fuchs, Fabian B., Lillicrap, Timothy
Processing sets or other unordered, potentially variable-sized inputs in neural networks is usually handled by aggregating a number of input tensors into a single representation. While a number of aggregation methods already exist from simple sum pooling to multi-head attention, they are limited in their representational power both from theoretical and empirical perspectives. On the search of a principally more powerful aggregation strategy, we propose an optimization-based method called Equilibrium Aggregation. We show that many existing aggregation methods can be recovered as special cases of Equilibrium Aggregation and that it is provably more efficient in some important cases. Equilibrium Aggregation can be used as a drop-in replacement in many existing architectures and applications. We validate its efficiency on three different tasks: median estimation, class counting, and molecular property prediction. In all experiments, Equilibrium Aggregation achieves higher performance than the other aggregation techniques we test.
Solving Mixed Integer Programs Using Neural Networks
Nair, Vinod, Bartunov, Sergey, Gimeno, Felix, von Glehn, Ingrid, Lichocki, Pawel, Lobov, Ivan, O'Donoghue, Brendan, Sonnerat, Nicolas, Tjandraatmadja, Christian, Wang, Pengming, Addanki, Ravichandra, Hapuarachchi, Tharindi, Keck, Thomas, Keeling, James, Kohli, Pushmeet, Ktena, Ira, Li, Yujia, Vinyals, Oriol, Zwols, Yori
Mixed Integer Programming (MIP) solvers rely on an array of sophisticated heuristics developed with decades of research to solve large-scale MIP instances encountered in practice. Machine learning offers to automatically construct better heuristics from data by exploiting shared structure among instances in the data. This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one. Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP. Neural Diving learns a deep neural network to generate multiple partial assignments for its integer variables, and the resulting smaller MIPs for un-assigned variables are solved with SCIP to construct high quality joint assignments. Neural Branching learns a deep neural network to make variable selection decisions in branch-and-bound to bound the objective value gap with a small tree. This is done by imitating a new variant of Full Strong Branching we propose that scales to large instances using GPUs. We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each. Most instances in all the datasets combined have $10^3-10^6$ variables and constraints after presolve, which is significantly larger than previous learning approaches. Comparing solvers with respect to primal-dual gap averaged over a held-out set of instances, the learning-augmented SCIP is 2x to 10x better on all datasets except one on which it is $10^5$x better, at large time limits. To the best of our knowledge, ours is the first learning approach to demonstrate such large improvements over SCIP on both large-scale real-world application datasets and MIPLIB.
Meta-Learning Deep Energy-Based Memory Models
Bartunov, Sergey, Rae, Jack W, Osindero, Simon, Lillicrap, Timothy P
We study the problem of learning associative memory -- a system which is able to retrieve a remembered pattern based on its distorted or incomplete version. Attractor networks provide a sound model of associative memory: patterns are stored as attractors of the network dynamics and associative retrieval is performed by running the dynamics starting from a query pattern until it converges to an attractor. In such models the dynamics are often implemented as an optimization procedure that minimizes an energy function, such as in the classical Hopfield network. In general it is difficult to derive a writing rule for a given dynamics and energy that is both compressive and fast. Thus, most research in energy-based memory has been limited either to tractable energy models not expressive enough to handle complex high-dimensional objects such as natural images, or to models that do not offer fast writing. We present a novel meta-learning approach to energy-based memory models (EBMM) that allows one to use an arbitrary neural architecture as an energy model and quickly store patterns in its weights. We demonstrate experimentally that our EBMM approach can build compressed memories for synthetic and natural data, and is capable of associative retrieval that outperforms existing memory systems in terms of the reconstruction error and compression rate.
Meta-Learning Neural Bloom Filters
Rae, Jack W, Bartunov, Sergey, Lillicrap, Timothy P
There has been a recent trend in training neural networks to replace data structures that have been crafted by hand, with an aim for faster execution, better accuracy, or greater compression. In this setting, a neural data structure is instantiated by training a network over many epochs of its inputs until convergence. In applications where inputs arrive at high throughput, or are ephemeral, training a network from scratch is not practical. This motivates the need for few-shot neural data structures. In this paper we explore the learning of approximate set membership over a set of data in one-shot via meta-learning. We propose a novel memory architecture, the Neural Bloom Filter, which is able to achieve significant compression gains over classical Bloom Filters and existing memory-augmented neural networks.
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Bartunov, Sergey, Santoro, Adam, Richards, Blake, Marris, Luke, Hinton, Geoffrey E., Lillicrap, Timothy
The backpropagation of error algorithm (BP) is impossible to implement in a real brain. The recent success of deep networks in machine learning and AI, however, has inspired proposals for understanding how the brain might learn across multiple layers, and hence how it might approximate BP. As of yet, none of these proposals have been rigorously evaluated on tasks where BP-guided deep learning has proved critical, or in architectures more structured than simple fully-connected networks. Here we present results on scaling up biologically motivated models of deep learning on datasets which need deep networks with appropriate architectures to achieve good performance. We present results on the MNIST, CIFAR-10, and ImageNet datasets and explore variants of target-propagation (TP) and feedback alignment (FA) algorithms, and explore performance in both fully- and locally-connected architectures. We also introduce weight-transport-free variants of difference target propagation (DTP) modified to remove backpropagation from the penultimate layer. Many of these algorithms perform well for MNIST, but for CIFAR and ImageNet we find that TP and FA variants perform significantly worse than BP, especially for networks composed of locally connected units, opening questions about whether new architectures and algorithms are required to scale these approaches. Our results and implementation details help establish baselines for biologically motivated deep learning schemes going forward.
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Bartunov, Sergey, Santoro, Adam, Richards, Blake, Marris, Luke, Hinton, Geoffrey E., Lillicrap, Timothy
The backpropagation of error algorithm (BP) is impossible to implement in a real brain. The recent success of deep networks in machine learning and AI, however, has inspired proposals for understanding how the brain might learn across multiple layers, and hence how it might approximate BP. As of yet, none of these proposals have been rigorously evaluated on tasks where BP-guided deep learning has proved critical, or in architectures more structured than simple fully-connected networks. Here we present results on scaling up biologically motivated models of deep learning on datasets which need deep networks with appropriate architectures to achieve good performance. We present results on the MNIST, CIFAR-10, and ImageNet datasets and explore variants of target-propagation (TP) and feedback alignment (FA) algorithms, and explore performance in both fully- and locally-connected architectures. We also introduce weight-transport-free variants of difference target propagation (DTP) modified to remove backpropagation from the penultimate layer. Many of these algorithms perform well for MNIST, but for CIFAR and ImageNet we find that TP and FA variants perform significantly worse than BP, especially for networks composed of locally connected units, opening questions about whether new architectures and algorithms are required to scale these approaches. Our results and implementation details help establish baselines for biologically motivated deep learning schemes going forward.
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Bartunov, Sergey, Santoro, Adam, Richards, Blake A., Hinton, Geoffrey E., Lillicrap, Timothy
The backpropagation of error algorithm (BP) is often said to be impossible to implement in a real brain. The recent success of deep networks in machine learning and AI, however, has inspired proposals for understanding how the brain might learn across multiple layers, and hence how it might implement or approximate BP. As of yet, none of these proposals have been rigorously evaluated on tasks where BP-guided deep learning has proved critical, or in architectures more structured than simple fully-connected networks. Here we present the first results on scaling up biologically motivated models of deep learning on datasets which need deep networks with appropriate architectures to achieve good performance. We present results on the MNIST, CIFAR-10, and ImageNet datasets and explore variants of target-propagation (TP) and feedback alignment (FA) algorithms, and explore performance in both fully- and locally-connected architectures. We also introduce weight-transport-free variants of difference target propagation (DTP) modified to remove backpropagation from the penultimate layer. Many of these algorithms perform well for MNIST, but for CIFAR and ImageNet we find that TP and FA variants perform significantly worse than BP, especially for networks composed of locally connected units, opening questions about whether new architectures and algorithms are required to scale these approaches. Our results and implementation details help establish baselines for biologically motivated deep learning schemes going forward.
Adaptive Cardinality Estimation
Ivanov, Oleg, Bartunov, Sergey
In this paper we address cardinality estimation problem which is an important subproblem in query optimization. Query optimization is a part of every relational DBMS responsible for finding the best way of the execution for the given query. These ways are called plans. The execution time of different plans may differ by several orders, so query optimizer has a great influence on the whole DBMS performance. We consider cost-based query optimization approach as the most popular one. It was observed that cost-based optimization quality depends much on cardinality estimation quality. Cardinality of the plan node is the number of tuples returned by it. In the paper we propose a novel cardinality estimation approach with the use of machine learning methods. The main point of the approach is using query execution statistics of the previously executed queries to improve cardinality estimations. We called this approach adaptive cardinality estimation to reflect this point. The approach is general, flexible, and easy to implement. The experimental evaluation shows that this approach significantly increases the quality of cardinality estimation, and therefore increases the DBMS performance for some queries by several times or even by several dozens of times.
Fast Adaptation in Generative Models with Generative Matching Networks
Bartunov, Sergey, Vetrov, Dmitry P.
Despite recent advances, the remaining bottlenecks in deep generative models are necessity of extensive training and difficulties with generalization from small number of training examples. We develop a new generative model called Generative Matching Network which is inspired by the recently proposed matching networks for one-shot learning in discriminative tasks. By conditioning on the additional input dataset, our model can instantly learn new concepts that were not available in the training data but conform to a similar generative process. The proposed framework does not explicitly restrict diversity of the conditioning data and also does not require an extensive inference procedure for training or adaptation. Our experiments on the Omniglot dataset demonstrate that Generative Matching Networks significantly improve predictive performance on the fly as more additional data is available and outperform existing state of the art conditional generative models.