Barrett, Jessica
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Jeanselme, Vincent, De-Arteaga, Maria, Zhang, Zhe, Barrett, Jessica, Tom, Brian
Machine learning risks reinforcing biases present in data, and, as we argue in this work, in what is absent from data. In healthcare, biases have marked medical history, leading to unequal care affecting marginalised groups. Patterns in missing data often reflect these group discrepancies, but the algorithmic fairness implications of group-specific missingness are not well understood. Despite its potential impact, imputation is often an overlooked preprocessing step, with attention placed on the reduction of reconstruction error and overall performance, ignoring how imputation can affect groups differently. Our work studies how imputation choices affect reconstruction errors across groups and algorithmic fairness properties of downstream predictions.
Neural Fine-Gray: Monotonic neural networks for competing risks
Jeanselme, Vincent, Yoon, Chang Ho, Tom, Brian, Barrett, Jessica
Time-to-event modelling, known as survival analysis, differs from standard regression as it addresses censoring in patients who do not experience the event of interest. Despite competitive performances in tackling this problem, machine learning methods often ignore other competing risks that preclude the event of interest. This practice biases the survival estimation. Extensions to address this challenge often rely on parametric assumptions or numerical estimations leading to sub-optimal survival approximations. This paper leverages constrained monotonic neural networks to model each competing survival distribution. This modelling choice ensures the exact likelihood maximisation at a reduced computational cost by using automatic differentiation. The effectiveness of the solution is demonstrated on one synthetic and three medical datasets. Finally, we discuss the implications of considering competing risks when developing risk scores for medical practice.