Goto

Collaborating Authors

 Barnard, Etienne


Variable Kernel Density Estimation in High-Dimensional Feature Spaces

AAAI Conferences

Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high-dimensional feature spaces. We derive a variable kernel bandwidth estimator by minimizing the leave-one-out entropy objective function and show that this estimator is capable of performing estimation in high-dimensional feature spaces with great success. We compare the performance of this estimator to state-of-the art maximum-likelihood estimators on a number of representative high-dimensional machine learning tasks and show that the newly introduced minimum leave-one-out entropy estimator performs optimally on a number of high-dimensional datasets considered.


Speech Technology for Information Access: a South African Case Study

AAAI Conferences

Telephone-based information access has the potential to deliver a significant positive impact in the developing world. We discuss some of the most important issues that must be addressed in order to realize this potential, including matters related to resource development, automatic speech recognition, text-to-speech systems, and user-interface design. Although our main focus has been on the eleven official languages of South Africa, we believe that many of these same issues will be relevant for the application of speech technology throughout the developing world.


Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications

Neural Information Processing Systems

In this paper we compare regression and classification systems. A regression system can generate an output f for an input X, where both X and f are continuous and, perhaps, multidimensional. A classification system can generate an output class, C, for an input X, where X is continuous and multidimensional and C is a member of a finite alphabet. The statistical technique of Classification And Regression Trees (CART) was developed during the years 1973 (Meisel and Michalpoulos) through 1984 (Breiman el al).


Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications

Neural Information Processing Systems

In this paper we compare regression and classification systems. A regression system can generate an output f for an input X, where both X and f are continuous and, perhaps, multidimensional. A classification system can generate an output class, C, for an input X, where X is continuous and multidimensional and C is a member of a finite alphabet. The statistical technique of Classification And Regression Trees (CART) was developed during the years 1973 (Meisel and Michalpoulos) through 1984 (Breiman el al).