Barker, Ken
Distilling Event Sequence Knowledge From Large Language Models
Wadhwa, Somin, Hassanzadeh, Oktie, Bhattacharjya, Debarun, Barker, Ken, Ni, Jian
Event sequence models have been found to be highly effective in the analysis and prediction of events. Building such models requires availability of abundant high-quality event sequence data. In certain applications, however, clean structured event sequences are not available, and automated sequence extraction results in data that is too noisy and incomplete. In this work, we explore the use of Large Language Models (LLMs) to generate event sequences that can effectively be used for probabilistic event model construction. This can be viewed as a mechanism of distilling event sequence knowledge from LLMs. Our approach relies on a Knowledge Graph (KG) of event concepts with partial causal relations to guide the generative language model for causal event sequence generation. We show that our approach can generate high-quality event sequences, filling a knowledge gap in the input KG. Furthermore, we explore how the generated sequences can be leveraged to discover useful and more complex structured knowledge from pattern mining and probabilistic event models. We release our sequence generation code and evaluation framework, as well as corpus of event sequence data.
An Evaluation Framework for Mapping News Headlines to Event Classes in a Knowledge Graph
Mbouadeu, Steve Fonin, Lorenzo, Martin, Barker, Ken, Hassanzadeh, Oktie
Mapping ongoing news headlines to event-related classes in a rich knowledge base can be an important component in a knowledge-based event analysis and forecasting solution. In this paper, we present a methodology for creating a benchmark dataset of news headlines mapped to event classes in Wikidata, and resources for the evaluation of methods that perform the mapping. We use the dataset to study two classes of unsupervised methods for this task: 1) adaptations of classic entity linking methods, and 2) methods that treat the problem as a zero-shot text classification problem. For the first approach, we evaluate off-the-shelf entity linking systems. For the second approach, we explore a) pre-trained natural language inference (NLI) models, and b) pre-trained large generative language models. We present the results of our evaluation, lessons learned, and directions for future work. The dataset and scripts for evaluation are made publicly available.
ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information
Abad, Zahra Shakeri Hossein, Gervasi, Vincenzo, Zowghi, Didar, Barker, Ken
Requirements elicitation requires extensive knowledge and deep understanding of the problem domain where the final system will be situated. However, in many software development projects, analysts are required to elicit the requirements from an unfamiliar domain, which often causes communication barriers between analysts and stakeholders. In this paper, we propose a requirements ELICitation Aid tool (ELICA) to help analysts better understand the target application domain by dynamic extraction and labeling of requirements-relevant knowledge. To extract the relevant terms, we leverage the flexibility and power of Weighted Finite State Transducers (WFSTs) in dynamic modeling of natural language processing tasks. In addition to the information conveyed through text, ELICA captures and processes non-linguistic information about the intention of speakers such as their confidence level, analytical tone, and emotions. The extracted information is made available to the analysts as a set of labeled snippets with highlighted relevant terms which can also be exported as an artifact of the Requirements Engineering (RE) process. The application and usefulness of ELICA are demonstrated through a case study. This study shows how pre-existing relevant information about the application domain and the information captured during an elicitation meeting, such as the conversation and stakeholders' intentions, can be captured and used to support analysts achieving their tasks.
Project Halo Update--Progress Toward Digital Aristotle
Gunning, David (Vulcan, Inc.) | Chaudhri, Vinay K. (SRI International) | Clark, Peter E. (Boeing Research and Technology) | Barker, Ken (University of Texas at Austin) | Chaw, Shaw-Yi (University of Texas at Austin) | Greaves, Mark (Vulcan, Inc.) | Grosof, Benjamin (Vulcan, Inc.) | Leung, Alice (Raytheon BBN Technologies Corporation) | McDonald, David D. (Raytheon BBN Technologies Corporation) | Mishra, Sunil (SRI International) | Pacheco, John (SRI International) | Porter, Bruce (University of Texas at Austin) | Spaulding, Aaron (SRI International) | Tecuci, Dan (University of Texas at Austin) | Tien, Jing (SRI International)
In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.
Project Halo UpdateโProgress Toward Digital Aristotle
Gunning, David (Vulcan, Inc.) | Chaudhri, Vinay K. (SRI International) | Clark, Peter E. (Boeing Research and Technology) | Barker, Ken (University of Texas at Austin) | Chaw, Shaw-Yi (University of Texas at Austin) | Greaves, Mark (Vulcan, Inc.) | Grosof, Benjamin (Vulcan, Inc.) | Leung, Alice (Raytheon BBN Technologies Corporation) | McDonald, David D. (Raytheon BBN Technologies Corporation) | Mishra, Sunil (SRI International) | Pacheco, John (SRI International) | Porter, Bruce (University of Texas at Austin) | Spaulding, Aaron (SRI International) | Tecuci, Dan (University of Texas at Austin) | Tien, Jing (SRI International)
In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.
Report on the Fourth International Conference on Knowledge Capture (K-CAP 2007)
Sleeman, Derek (University of Aberdeen) | Barker, Ken (University of Texas) | Corsar, David (University of Aberdeen)
The Fourth International Conference on Knowledge Capture was held October 28-31, 2007 in Whistler, British Columbia. K-CAP 2007 included two invited talks, technical papers, posters, and demonstrations. Topics included knowledge engineering and modeling methodologies, knowledge engineering and the semantic web, mixed-initiative planning and decision-support tools, acquisition of problem-solving knowledge, knowledge-based markup techniques, knowledge extraction systems, knowledge acquisition tools, and advice taking systems.
Report on the Fourth International Conference on Knowledge Capture (K-CAP 2007)
Sleeman, Derek (University of Aberdeen) | Barker, Ken (University of Texas) | Corsar, David (University of Aberdeen)
The Fourth International Conference on Knowledge Capture was held October 28-31, 2007, in Whistler, British Columbia. The topics covered in the invited talks, technical papers, posters, and demonstrations included knowledge engineering and modeling methodologies, knowledge engineering and the semantic web, mixedinitiative planning and decision-support tools, acquisition of problem-solving knowledge, knowledge-based markup techniques, knowledge extraction systems, knowledge acquisition tools, and advice-taking systems. These events, which were from web-based game-playing systems. The title of his talk was "Human Ken Barker and John Gennari Derek Sleeman noted in his introductory Etzioni's invited talk and had primary responsibilities for comments, knowledge capture is gave some technical details of the systems the conference and workshop programs. In the The best technical paper Since the K-CAP series was initiated, last decade or so, knowledge capture award was presented to Kai Eckert, the K-CAP and European Knowledge has again expanded its horizons significantly Heiner Stuckenschmidt, and Magnus Acquisition Workshop (EKAW) meetings to embrace information-extraction Pfeffer for their paper "Interactive have been held in alternate years, techniques, and more recently Thesaurus Assessment for Automatic with the K-CAP meetings taking place the web and enhanced connectivity Document Annotation."
Project Halo: Towards a Digital Aristotle
Friedland, Noah S., Allen, Paul G., Matthews, Gavin, Witbrock, Michael, Baxter, David, Curtis, Jon, Shepard, Blake, Miraglia, Pierluigi, Angele, Jurgen, Staab, Steffen, Moench, Eddie, Oppermann, Henrik, Wenke, Dirk, Israel, David, Chaudhri, Vinay, Porter, Bruce, Barker, Ken, Fan, James, Chaw, Shaw Yi, Yeh, Peter, Tecuci, Dan, Clark, Peter
Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications. These justifications will play a critical role in building user trust in the question-answering capabilities of Digital Aristotle. This article presents the motivation and longterm goals of Project Halo, describes in detail the six-month first phase of the project -- the Halo Pilot -- its KR&R challenge, empirical evaluation, results, and failure analysis.
Project Halo: Towards a Digital Aristotle
Friedland, Noah S., Allen, Paul G., Matthews, Gavin, Witbrock, Michael, Baxter, David, Curtis, Jon, Shepard, Blake, Miraglia, Pierluigi, Angele, Jurgen, Staab, Steffen, Moench, Eddie, Oppermann, Henrik, Wenke, Dirk, Israel, David, Chaudhri, Vinay, Porter, Bruce, Barker, Ken, Fan, James, Chaw, Shaw Yi, Yeh, Peter, Tecuci, Dan, Clark, Peter
Project Halo is a multistaged effort, sponsored by Vulcan Inc, aimed at creating Digital Aristotle, an application that will encompass much of the world's scientific knowledge and be capable of applying sophisticated problem solving to answer novel questions. Vulcan envisions two primary roles for Digital Aristotle: as a tutor to instruct students in the sciences and as an interdisciplinary research assistant to help scientists in their work. As a first step towards this goal, we have just completed a six-month pilot phase designed to assess the state of the art in applied knowledge representation and reasoning (KR&/R). Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications. These justifications will play a critical role in building user trust in the question-answering capabilities of Digital Aristotle. Prior to the final evaluation, a "failure taxonomy' was collaboratively developed in an attempt to standardize failure analysis and to facilitate cross-platform comparisons. Despite differences in approach, all three systems did very well on the challenge, achieving performance comparable to the human median. The analysis also provided key insights into how the approaches might be scaled, while at the same time suggesting how the cost of producing such systems might be reduced. This outcome leaves us highly optimistic that the technical challenges facing this effort in the years to come can be identified and overcome. This article presents the motivation and longterm goals of Project Halo, describes in detail the six-month first phase of the project -- the Halo Pilot -- its KR&R challenge, empirical evaluation, results, and failure analysis. The pilot's outcome is used to define challenges for the next phase of the project and beyond.