Barbano, Carlo Alberto
Unsupervised Learning of Unbiased Visual Representations
Barbano, Carlo Alberto, Tartaglione, Enzo, Grangetto, Marco
Deep neural networks often struggle to learn robust representations in the presence of dataset biases, leading to suboptimal generalization on unbiased datasets. This limitation arises because the models heavily depend on peripheral and confounding factors, inadvertently acquired during training. Existing approaches to address this problem typically involve explicit supervision of bias attributes or reliance on prior knowledge about the biases. In this study, we address the challenging scenario where no explicit annotations of bias are available, and there's no prior knowledge about its nature. We present a fully unsupervised debiasing framework with three key steps: firstly, leveraging the inherent tendency to learn malignant biases to acquire a bias-capturing model; next, employing a pseudo-labeling process to obtain bias labels; and finally, applying cutting-edge supervised debiasing techniques to achieve an unbiased model. Additionally, we introduce a theoretical framework for evaluating model biasedness and conduct a detailed analysis of how biases impact neural network training. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of our method, showcasing state-of-the-art performance in various settings, occasionally surpassing fully supervised debiasing approaches.
Anatomical Foundation Models for Brain MRIs
Barbano, Carlo Alberto, Brunello, Matteo, Dufumier, Benoit, Grangetto, Marco
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for pretraining DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information with a weakly contrastive learning approach and ii.) achieves state-of-the-art performances in many different downstream tasks. To validate our approach we consider 12 different downstream tasks for diagnosis classification, and prediction of 10 different clinical assessment scores.
Multi-target stain normalization for histology slides
Ivanov, Desislav, Barbano, Carlo Alberto, Grangetto, Marco
Traditional staining normalization approaches, e.g. Macenko, typically rely on the choice of a single representative reference image, which may not adequately account for the diverse staining patterns of datasets collected in practical scenarios. In this study, we introduce a novel approach that leverages multiple reference images to enhance robustness against stain variation. Our method is parameter-free and can be adopted in existing computational pathology pipelines with no significant changes. We evaluate the effectiveness of our method through experiments using a deep-learning pipeline for automatic nuclei segmentation on colorectal images. Our results show that by leveraging multiple reference images, better results can be achieved when generalizing to external data, where the staining can widely differ from the training set.
AI-Assisted Diagnosis for Covid-19 CXR Screening: From Data Collection to Clinical Validation
Barbano, Carlo Alberto, Renzulli, Riccardo, Grosso, Marco, Basile, Domenico, Busso, Marco, Grangetto, Marco
In this paper, we present the major results from the Covid Radiographic imaging System based on AI (Co.R.S.A.) project, which took place in Italy. This project aims to develop a state-of-the-art AI-based system for diagnosing Covid-19 pneumonia from Chest X-ray (CXR) images. The contributions of this work are manyfold: the release of the public CORDA dataset, a deep learning pipeline for Covid-19 detection, and the clinical validation of the developed solution by expert radiologists. The proposed detection model is based on a two-step approach that, paired with state-of-the-art debiasing, provides reliable results. Most importantly, our investigation includes the actual usage of the diagnosis aid tool by radiologists, allowing us to assess the real benefits in terms of accuracy and time efficiency. Project homepage: https://corsa.di.unito.it/
Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray
Gallone, Guglielmo, Iodice, Francesco, Presta, Alberto, Tore, Davide, de Filippo, Ovidio, Visciano, Michele, Barbano, Carlo Alberto, Serafini, Alessandro, Gorrini, Paola, Bruno, Alessandro, Marra, Walter Grosso, Hughes, James, Iannaccone, Mario, Fonio, Paolo, Fiandrotti, Attilio, Depaoli, Alessandro, Grangetto, Marco, de Ferrari, Gaetano Maria, D'Ascenzo, Fabrizio
Aims. To develop a deep-learning based system for recognition of subclinical atherosclerosis on a plain frontal chest x-ray. Methods and Results. A deep-learning algorithm to predict coronary artery calcium (CAC) score (the AI-CAC model) was developed on 460 chest x-ray (80% training cohort, 20% internal validation cohort) of primary prevention patients (58.4% male, median age 63 [51-74] years) with available paired chest x-ray and chest computed tomography (CT) indicated for any clinical reason and performed within 3 months. The CAC score calculated on chest CT was used as ground truth. The model was validated on an temporally-independent cohort of 90 patients from the same institution (external validation). The diagnostic accuracy of the AI-CAC model assessed by the area under the curve (AUC) was the primary outcome. Overall, median AI-CAC score was 35 (0-388) and 28.9% patients had no AI-CAC. AUC of the AI-CAC model to identify a CAC>0 was 0.90 in the internal validation cohort and 0.77 in the external validation cohort. Sensitivity was consistently above 92% in both cohorts. In the overall cohort (n=540), among patients with AI-CAC=0, a single ASCVD event occurred, after 4.3 years. Patients with AI-CAC>0 had significantly higher Kaplan Meier estimates for ASCVD events (13.5% vs. 3.4%, log-rank=0.013). Conclusion. The AI-CAC model seems to accurately detect subclinical atherosclerosis on chest x-ray with elevated sensitivity, and to predict ASCVD events with elevated negative predictive value. Adoption of the AI-CAC model to refine CV risk stratification or as an opportunistic screening tool requires prospective evaluation.
Unbiased Supervised Contrastive Learning
Barbano, Carlo Alberto, Dufumier, Benoit, Tartaglione, Enzo, Grangetto, Marco, Gori, Pietro
Many datasets are biased, namely they contain easy-to-learn features that are highly correlated with the target class only in the dataset but not in the true underlying distribution of the data. For this reason, learning unbiased models from biased data has become a very relevant research topic in the last years. In this work, we tackle the problem of learning representations that are robust to biases. We first present a margin-based theoretical framework that allows us to clarify why recent contrastive losses (InfoNCE, SupCon, etc.) can fail when dealing with biased data. Based on that, we derive a novel formulation of the supervised contrastive loss (epsilon-SupInfoNCE), providing more accurate control of the minimal distance between positive and negative samples. Furthermore, thanks to our theoretical framework, we also propose FairKL, a new debiasing regularization loss, that works well even with extremely biased data. We validate the proposed losses on standard vision datasets including CIFAR10, CIFAR100, and ImageNet, and we assess the debiasing capability of FairKL with epsilon-SupInfoNCE, reaching state-of-the-art performance on a number of biased datasets, including real instances of biases in the wild.
Contrastive learning for regression in multi-site brain age prediction
Barbano, Carlo Alberto, Dufumier, Benoit, Duchesnay, Edouard, Grangetto, Marco, Gori, Pietro
Building accurate Deep Learning (DL) models for brain age prediction is a very relevant topic in neuroimaging, as it could help better understand neurodegenerative disorders and find new biomarkers. To estimate accurate and generalizable models, large datasets have been collected, which are often multi-site and multi-scanner. This large heterogeneity negatively affects the generalization performance of DL models since they are prone to overfit site-related noise. Recently, contrastive learning approaches have been shown to be more robust against noise in data or labels. For this reason, we propose a novel contrastive learning regression loss for robust brain age prediction using MRI scans. Our method achieves state-of-the-art performance on the OpenBHB challenge, yielding the best generalization capability and robustness to site-related noise.
EnD: Entangling and Disentangling deep representations for bias correction
Tartaglione, Enzo, Barbano, Carlo Alberto, Grangetto, Marco
Artificial neural networks perform state-of-the-art in an ever-growing number of tasks, and nowadays they are used to solve an incredibly large variety of tasks. There are problems, like the presence of biases in the training data, which question the generalization capability of these models. In this work we propose EnD, a regularization strategy whose aim is to prevent deep models from learning unwanted biases. In particular, we insert an "information bottleneck" at a certain point of the deep neural network, where we disentangle the information about the bias, still letting the useful information for the training task forward-propagating in the rest of the model. One big advantage of EnD is that we do not require additional training complexity (like decoders or extra layers in the model), since it is a regularizer directly applied on the trained model. Our experiments show that EnD effectively improves the generalization on unbiased test sets, and it can be effectively applied on real-case scenarios, like removing hidden biases in the COVID-19 detection from radiographic images.
UniToPatho, a labeled histopathological dataset for colorectal polyps classification and adenoma dysplasia grading
Barbano, Carlo Alberto, Perlo, Daniele, Tartaglione, Enzo, Fiandrotti, Attilio, Bertero, Luca, Cassoni, Paola, Grangetto, Marco
Histopathological characterization of colorectal polyps allows to tailor patients' management and follow up with the ultimate aim of avoiding or promptly detecting an invasive carcinoma. Colorectal polyps characterization relies on the histological analysis of tissue samples to determine the polyps malignancy and dysplasia grade. Deep neural networks achieve outstanding accuracy in medical patterns recognition, however they require large sets of annotated training images. We introduce UniToPatho, an annotated dataset of 9536 hematoxylin and eosin (H&E) stained patches extracted from 292 whole-slide images, meant for training deep neural networks for colorectal polyps classification and adenomas grading. We present our dataset and provide insights on how to tackle the problem of automatic colorectal polyps characterization.