Barath, Daniel
MAP-ADAPT: Real-Time Quality-Adaptive Semantic 3D Maps
Zheng, Jianhao, Barath, Daniel, Pollefeys, Marc, Armeni, Iro
Creating 3D semantic reconstructions of environments is fundamental to many applications, especially when related to autonomous agent operation (e.g., goal-oriented navigation or object interaction and manipulation). Commonly, 3D semantic reconstruction systems capture the entire scene in the same level of detail. However, certain tasks (e.g., object interaction) require a fine-grained and high-resolution map, particularly if the objects to interact are of small size or intricate geometry. In recent practice, this leads to the entire map being in the same high-quality resolution, which results in increased computational and storage costs. To address this challenge, we propose MAP-ADAPT, a real-time method for quality-adaptive semantic 3D reconstruction using RGBD frames. MAP-ADAPT is the first adaptive semantic 3D mapping algorithm that, unlike prior work, generates directly a single map with regions of different quality based on both the semantic information and the geometric complexity of the scene. Leveraging a semantic SLAM pipeline for pose and semantic estimation, we achieve comparable or superior results to state-of-the-art methods on synthetic and real-world data, while significantly reducing storage and computation requirements.
Volumetric Semantically Consistent 3D Panoptic Mapping
Miao, Yang, Armeni, Iro, Pollefeys, Marc, Barath, Daniel
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating comprehensive, accurate, and efficient semantic 3D maps suitable for autonomous agents in unstructured environments. The proposed approach is based on a Voxel-TSDF representation used in recent algorithms. It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions. Further improvements are achieved by graph optimization-based semantic labeling and instance refinement. The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics. We also highlight a downfall in the evaluation of recent studies: using the ground truth trajectory as input instead of a SLAM-estimated one substantially affects the accuracy, creating a large gap between the reported results and the actual performance on real-world data.
NeFSAC: Neurally Filtered Minimal Samples
Cavalli, Luca, Pollefeys, Marc, Barath, Daniel
Since RANSAC, a great deal of research has been devoted to improving both its accuracy and run-time. Still, only a few methods aim at recognizing invalid minimal samples early, before the often expensive model estimation and quality calculation are done. To this end, we propose NeFSAC, an efficient algorithm for neural filtering of motion-inconsistent and poorly-conditioned minimal samples. We train NeFSAC to predict the probability of a minimal sample leading to an accurate relative pose, only based on the pixel coordinates of the image correspondences. Our neural filtering model learns typical motion patterns of samples which lead to unstable poses, and regularities in the possible motions to favour well-conditioned and likely-correct samples. The novel lightweight architecture implements the main invariants of minimal samples for pose estimation, and a novel training scheme addresses the problem of extreme class imbalance. NeFSAC can be plugged into any existing RANSAC-based pipeline. We integrate it into USAC and show that it consistently provides strong speed-ups even under extreme train-test domain gaps - for example, the model trained for the autonomous driving scenario works on PhotoTourism too. We tested NeFSAC on more than 100k image pairs from three publicly available real-world datasets and found that it leads to one order of magnitude speed-up, while often finding more accurate results than USAC alone. The source code is available at https://github.com/cavalli1234/NeFSAC.