Barata, Catarina
Prediction of 30-day hospital readmission with clinical notes and EHR information
Almeida, Tiago, Moreno, Plinio, Barata, Catarina
High hospital readmission rates are associated with significant costs and health risks for patients. Therefore, it is critical to develop predictive models that can support clinicians to determine whether or not a patient will return to the hospital in a relatively short period of time (e.g, 30-days). Nowadays, it is possible to collect both structured (electronic health records - EHR) and unstructured information (clinical notes) about a patient hospital event, all potentially containing relevant information for a predictive model. However, their integration is challenging. In this work we explore the combination of clinical notes and EHRs to predict 30-day hospital readmissions. We address the representation of the various types of information available in the EHR data, as well as exploring LLMs to characterize the clinical notes. We collect both information sources as the nodes of a graph neural network (GNN). Our model achieves an AUROC of 0.72 and a balanced accuracy of 66.7\%, highlighting the importance of combining the multimodal information.
Continual Deep Active Learning for Medical Imaging: Replay-Base Architecture for Context Adaptation
Daniel, Rui, Verdelho, M. Rita, Barata, Catarina, Santiago, Carlos
Deep Learning for medical imaging faces challenges in adapting and generalizing to new contexts. Additionally, it often lacks sufficient labeled data for specific tasks requiring significant annotation effort. Continual Learning (CL) tackles adaptability and generalizability by enabling lifelong learning from a data stream while mitigating forgetting of previously learned knowledge. Active Learning (AL) reduces the number of required annotations for effective training. This work explores both approaches (CAL) to develop a novel framework for robust medical image analysis. Based on the automatic recognition of shifts in image characteristics, Replay-Base Architecture for Context Adaptation (RBACA) employs a CL rehearsal method to continually learn from diverse contexts, and an AL component to select the most informative instances for annotation. A novel approach to evaluate CAL methods is established using a defined metric denominated IL-Score, which allows for the simultaneous assessment of transfer learning, forgetting, and final model performance. We show that RBACA works in domain and class-incremental learning scenarios, by assessing its IL-Score on the segmentation and diagnosis of cardiac images. The results show that RBACA outperforms a baseline framework without CAL, and a state-of-the-art CAL method across various memory sizes and annotation budgets. Our code is available in https://github.com/RuiDaniel/RBACA .
Extending 3D body pose estimation for robotic-assistive therapies of autistic children
Santos, Laura, Carvalho, Bernardo, Barata, Catarina, Santos-Victor, Josรฉ
Robotic-assistive therapy has demonstrated very encouraging results for children with Autism. Accurate estimation of the child's pose is essential both for human-robot interaction and for therapy assessment purposes. Non-intrusive methods are the sole viable option since these children are sensitive to touch. While depth cameras have been used extensively, existing methods face two major limitations: (i) they are usually trained with adult-only data and do not correctly estimate a child's pose, and (ii) they fail in scenarios with a high number of occlusions. Therefore, our goal was to develop a 3D pose estimator for children, by adapting an existing state-of-the-art 3D body modelling method and incorporating a linear regression model to fine-tune one of its inputs, thereby correcting the pose of children's 3D meshes. In controlled settings, our method has an error below $0.3m$, which is considered acceptable for this kind of application and lower than current state-of-the-art methods. In real-world settings, the proposed model performs similarly to a Kinect depth camera and manages to successfully estimate the 3D body poses in a much higher number of frames.
XAI for Skin Cancer Detection with Prototypes and Non-Expert Supervision
Correia, Miguel, Bissoto, Alceu, Santiago, Carlos, Barata, Catarina
Skin cancer detection through dermoscopy image analysis is a critical task. However, existing models used for this purpose often lack interpretability and reliability, raising the concern of physicians due to their black-box nature. In this paper, we propose a novel approach for the diagnosis of melanoma using an interpretable prototypical-part model. We introduce a guided supervision based on non-expert feedback through the incorporation of: 1) binary masks, obtained automatically using a segmentation network; and 2) user-refined prototypes. These two distinct information pathways aim to ensure that the learned prototypes correspond to relevant areas within the skin lesion, excluding confounding factors beyond its boundaries. Experimental results demonstrate that, even without expert supervision, our approach achieves superior performance and generalization compared to non-interpretable models.
Even Small Correlation and Diversity Shifts Pose Dataset-Bias Issues
Bissoto, Alceu, Barata, Catarina, Valle, Eduardo, Avila, Sandra
Distribution shifts are common in real-world datasets and can affect the performance and reliability of deep learning models. In this paper, we study two types of distribution shifts: diversity shifts, which occur when test samples exhibit patterns unseen during training, and correlation shifts, which occur when test data present a different correlation between seen invariant and spurious features. We propose an integrated protocol to analyze both types of shifts using datasets where they co-exist in a controllable manner. Finally, we apply our approach to a real-world classification problem of skin cancer analysis, using out-of-distribution datasets and specialized bias annotations. Our protocol reveals three findings: 1) Models learn and propagate correlation shifts even with low-bias training; this poses a risk of accumulating and combining unaccountable weak biases; 2) Models learn robust features in high- and low-bias scenarios but use spurious ones if test samples have them; this suggests that spurious correlations do not impair the learning of robust features; 3) Diversity shift can reduce the reliance on spurious correlations; this is counter intuitive since we expect biased models to depend more on biases when invariant features are missing. Our work has implications for distribution shift research and practice, providing new insights into how models learn and rely on spurious correlations under different types of shifts.
A Survey on Deep Learning for Skin Lesion Segmentation
Mirikharaji, Zahra, Abhishek, Kumar, Bissoto, Alceu, Barata, Catarina, Avila, Sandra, Valle, Eduardo, Celebi, M. Emre, Hamarneh, Ghassan
Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online at https://github.com/sfu-mial/skin-lesion-segmentation-survey.