Baral, Elina
Designing an Evaluation Framework for Large Language Models in Astronomy Research
Wu, John F., Hyk, Alina, McCormick, Kiera, Ye, Christine, Astarita, Simone, Baral, Elina, Ciuca, Jo, Cranney, Jesse, Field, Anjalie, Iyer, Kartheik, Koehn, Philipp, Kotler, Jenn, Kruk, Sandor, Ntampaka, Michelle, O'Neill, Charles, Peek, Joshua E. G., Sharma, Sanjib, Yunus, Mikaeel
Large Language Models (LLMs) are shifting how scientific research is done. It is imperative to understand how researchers interact with these models and how scientific sub-communities like astronomy might benefit from them. However, there is currently no standard for evaluating the use of LLMs in astronomy. Therefore, we present the experimental design for an evaluation study on how astronomy researchers interact with LLMs. We deploy a Slack chatbot that can answer queries from users via Retrieval-Augmented Generation (RAG); these responses are grounded in astronomy papers from arXiv. We record and anonymize user questions and chatbot answers, user upvotes and downvotes to LLM responses, user feedback to the LLM, and retrieved documents and similarity scores with the query. Our data collection method will enable future dynamic evaluations of LLM tools for astronomy.
NEREL-BIO: A Dataset of Biomedical Abstracts Annotated with Nested Named Entities
Loukachevitch, Natalia, Manandhar, Suresh, Baral, Elina, Rozhkov, Igor, Braslavski, Pavel, Ivanov, Vladimir, Batura, Tatiana, Tutubalina, Elena
This paper describes NEREL-BIO -- an annotation scheme and corpus of PubMed abstracts in Russian and smaller number of abstracts in English. NEREL-BIO extends the general domain dataset NEREL by introducing domain-specific entity types. NEREL-BIO annotation scheme covers both general and biomedical domains making it suitable for domain transfer experiments. NEREL-BIO provides annotation for nested named entities as an extension of the scheme employed for NEREL. Nested named entities may cross entity boundaries to connect to shorter entities nested within longer entities, making them harder to detect. NEREL-BIO contains annotations for 700+ Russian and 100+ English abstracts. All English PubMed annotations have corresponding Russian counterparts. Thus, NEREL-BIO comprises the following specific features: annotation of nested named entities, it can be used as a benchmark for cross-domain (NEREL -> NEREL-BIO) and cross-language (English -> Russian) transfer. We experiment with both transformer-based sequence models and machine reading comprehension (MRC) models and report their results. The dataset is freely available at https://github.com/nerel-ds/NEREL-BIO.