Goto

Collaborating Authors

 Bao, Runxue


All-in-One Tuning and Structural Pruning for Domain-Specific LLMs

arXiv.org Artificial Intelligence

Existing pruning techniques for large language models (LLMs) targeting domain-specific applications typically follow a two-stage process: pruning the pretrained general-purpose LLMs and then fine-tuning the pruned LLMs on specific domains. However, the pruning decisions, derived from the pretrained weights, remain unchanged during fine-tuning, even if the weights have been updated. Therefore, such a combination of the pruning decisions and the finetuned weights may be suboptimal, leading to non-negligible performance degradation. To address these limitations, we propose ATP: All-in-One Tuning and Structural Pruning, a unified one-stage structural pruning and fine-tuning approach that dynamically identifies the current optimal substructure throughout the fine-tuning phase via a trainable pruning decision generator. Moreover, given the limited available data for domain-specific applications, Low-Rank Adaptation (LoRA) becomes a common technique to fine-tune the LLMs. In ATP, we introduce LoRA-aware forward and sparsity regularization to ensure that the substructures corresponding to the learned pruning decisions can be directly removed after the ATP process. ATP outperforms the state-of-the-art two-stage pruning methods on tasks in the legal and healthcare domains. More specifically, ATP recovers up to 88% and 91% performance of the dense model when pruning 40% parameters of LLaMA2-7B and LLaMA3-8B models, respectively.


InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved exceptional capabilities in open generation across various domains, yet they encounter difficulties with tasks that require intensive knowledge. To address these challenges, methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules. These approaches, however, face data inefficiency issues as they necessitate the processing of both known and unknown knowledge for fine-tuning. Thus, our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge. A risk of introducing new knowledge is the potential forgetting of existing knowledge. To mitigate this risk, we propose the innovative {\method} framework. This framework employs transformer internal states to determine when to enrich LLM outputs with additional information, effectively preventing knowledge forgetting. Performance evaluations using the UMLS-2.5k and MetaQA domain knowledge graphs reveal that {\method} not only successfully integrates new knowledge but also outperforms state-of-the-art baselines, reducing knowledge forgetting by 9\% and 6\%, respectively.


A Self-guided Multimodal Approach to Enhancing Graph Representation Learning for Alzheimer's Diseases

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) are powerful machine learning models designed to handle irregularly structured data. However, their generic design often proves inadequate for analyzing brain connectomes in Alzheimer's Disease (AD), highlighting the need to incorporate domain knowledge for optimal performance. Infusing AD-related knowledge into GNNs is a complicated task. Existing methods typically rely on collaboration between computer scientists and domain experts, which can be both time-intensive and resource-demanding. To address these limitations, this paper presents a novel self-guided, knowledge-infused multimodal GNN that autonomously incorporates domain knowledge into the model development process. Our approach conceptualizes domain knowledge as natural language and introduces a specialized multimodal GNN capable of leveraging this uncurated knowledge to guide the learning process of the GNN, such that it can improve the model performance and strengthen the interpretability of the predictions. To evaluate our framework, we curated a comprehensive dataset of recent peer-reviewed papers on AD and integrated it with multiple real-world AD datasets. Experimental results demonstrate the ability of our method to extract relevant domain knowledge, provide graph-based explanations for AD diagnosis, and improve the overall performance of the GNN. This approach provides a more scalable and efficient alternative to inject domain knowledge for AD compared with the manual design from the domain expert, advancing both prediction accuracy and interpretability in AD diagnosis.


Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs

arXiv.org Artificial Intelligence

Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training. However, long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization. Prior work has shown that in-context learning (ICL) with retriever augmentation can help LLMs better capture long-tail knowledge, reducing their reliance on pre-trained data. Despite these advances, we observe that LLM predictions for long-tail questions remain uncertain to variations in retrieved samples. To take advantage of the uncertainty in ICL for guiding LLM predictions toward correct answers on long-tail samples, we propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions. Our approach prioritizes more informative and stable samples while demoting misleading ones, updating rankings based on the feedback from the LLM w.r.t. each retrieved sample. To enhance training efficiency and reduce query costs, we introduce a learnable dynamic ranking threshold, adjusted when the model encounters negative prediction shifts. Experimental results on various question-answering datasets from different domains show that our method outperforms the best baseline by $2.76\%$, with a notable $5.96\%$ boost in accuracy on long-tail questions that elude zero-shot inference.


Transfer Learning with Clinical Concept Embeddings from Large Language Models

arXiv.org Artificial Intelligence

Knowledge sharing is crucial in healthcare, especially when leveraging data from multiple clinical sites to address data scarcity, reduce costs, and enable timely interventions. Transfer learning can facilitate cross-site knowledge transfer, but a major challenge is heterogeneity in clinical concepts across different sites. Large Language Models (LLMs) show significant potential of capturing the semantic meaning of clinical concepts and reducing heterogeneity. This study analyzed electronic health records from two large healthcare systems to assess the impact of semantic embeddings from LLMs on local, shared, and transfer learning models. Results indicate that domain-specific LLMs, such as Med-BERT, consistently outperform in local and direct transfer scenarios, while generic models like OpenAI embeddings require fine-tuning for optimal performance. However, excessive tuning of models with biomedical embeddings may reduce effectiveness, emphasizing the need for balance. This study highlights the importance of domain-specific embeddings and careful model tuning for effective knowledge transfer in healthcare.


Unlocking Memorization in Large Language Models with Dynamic Soft Prompting

arXiv.org Artificial Intelligence

Pretrained large language models (LLMs) have revolutionized natural language processing (NLP) tasks such as summarization, question answering, and translation. However, LLMs pose significant security risks due to their tendency to memorize training data, leading to potential privacy breaches and copyright infringement. Accurate measurement of this memorization is essential to evaluate and mitigate these potential risks. However, previous attempts to characterize memorization are constrained by either using prefixes only or by prepending a constant soft prompt to the prefixes, which cannot react to changes in input. To address this challenge, we propose a novel method for estimating LLM memorization using dynamic, prefix-dependent soft prompts. Our approach involves training a transformer-based generator to produce soft prompts that adapt to changes in input, thereby enabling more accurate extraction of memorized data. Our method not only addresses the limitations of previous methods but also demonstrates superior performance in diverse experimental settings compared to state-of-the-art techniques. In particular, our method can achieve the maximum relative improvement of 112.75% and 32.26% over the vanilla baseline in terms of discoverable memorization rate for the text generation task and code generation task respectively.


Pruning as a Domain-specific LLM Extractor

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have exhibited remarkable proficiency across a wide array of NLP tasks. However, the escalation in model size also engenders substantial deployment costs. While few efforts have explored model pruning techniques to reduce the size of LLMs, they mainly center on general or task-specific weights. This leads to suboptimal performance due to lacking specificity on the target domain or generality on different tasks when applied to domain-specific challenges. This work introduces an innovative unstructured dual-pruning methodology, D-Pruner, for domain-specific compression on LLM. It extracts a compressed, domain-specific, and task-agnostic LLM by identifying LLM weights that are pivotal for general capabilities, like linguistic capability and multi-task solving, and domain-specific knowledge. More specifically, we first assess general weight importance by quantifying the error incurred upon their removal with the help of an open-domain calibration dataset. Then, we utilize this general weight importance to refine the training loss, so that it preserves generality when fitting into a specific domain. Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity. Our comprehensive experiments across various tasks in healthcare and legal domains show the effectiveness of D-Pruner in domain-specific compression. Our code is available at https://github.com/psunlpgroup/D-Pruner.


Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch

arXiv.org Artificial Intelligence

Current techniques for deep neural network (DNN) pruning often involve intricate multi-step processes that require domain-specific expertise, making their widespread adoption challenging. To address the limitation, the Only-Train-Once (OTO) and OTOv2 are proposed to eliminate the need for additional fine-tuning steps by directly training and compressing a general DNN from scratch. Nevertheless, the static design of optimizers (in OTO) can lead to convergence issues of local optima. In this paper, we proposed the Auto-Train-Once (ATO), an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs. During the model training phase, our approach not only trains the target model but also leverages a controller network as an architecture generator to guide the learning of target model weights. Furthermore, we developed a novel stochastic gradient algorithm that enhances the coordination between model training and controller network training, thereby improving pruning performance. We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures (including ResNet18, ResNet34, ResNet50, ResNet56, and MobileNetv2) on standard benchmark datasets (CIFAR-10, CIFAR-100, and ImageNet).


Online Transfer Learning for RSV Case Detection

arXiv.org Artificial Intelligence

In such cases, transferring knowledge from the source domain becomes crucial, particularly because the Machine learning has made substantial advancements in limited initial data in the target domain may be insufficient recent decades, with its applications spanning a wide range of for effective learning. The extensive and diverse information fields such as image and speech recognition, natural language available from the source domains can significantly compensate processing, and autonomous driving. Despite these achievements, for this shortfall, providing a foundational knowledge base machine learning in biomedicine faces significant challenges, that the model can build upon as more target domain data particularly in data collection. The acquisition of labeled becomes available. Therefore, the efficiency and effectiveness data can be very costly or even unfeasible due to factors of learning in the target domain are greatly enhanced by the like ethical considerations, patient privacy, and the scarcity transferred knowledge from the source domains. of certain diseases. These challenges have led researchers to Online transfer learning entails leveraging knowledge from increasingly rely on utilizing data from related domains that a static source domain and applying it to an ongoing, evolving have a more abundant supply of data.


A Survey of Heterogeneous Transfer Learning

arXiv.org Artificial Intelligence

The application of transfer learning, an approach utilizing knowledge from a source domain to enhance model performance in a target domain, has seen a tremendous rise in recent years, underpinning many real-world scenarios. The key to its success lies in the shared common knowledge between the domains, a prerequisite in most transfer learning methodologies. These methods typically presuppose identical feature spaces and label spaces in both domains, known as homogeneous transfer learning, which, however, is not always a practical assumption. Oftentimes, the source and target domains vary in feature spaces, data distributions, and label spaces, making it challenging or costly to secure source domain data with identical feature and label spaces as the target domain. Arbitrary elimination of these differences is not always feasible or optimal. Thus, heterogeneous transfer learning, acknowledging and dealing with such disparities, has emerged as a promising approach for a variety of tasks. Despite the existence of a survey in 2017 on this topic, the fast-paced advances post-2017 necessitate an updated, in-depth review. We therefore present a comprehensive survey of recent developments in heterogeneous transfer learning methods, offering a systematic guide for future research. Our paper reviews methodologies for diverse learning scenarios, discusses the limitations of current studies, and covers various application contexts, including Natural Language Processing, Computer Vision, Multimodality, and Biomedicine, to foster a deeper understanding and spur future research.