Goto

Collaborating Authors

 Banfi, Jacopo


Multiple-Hypothesis Path Planning with Uncertain Object Detections

arXiv.org Artificial Intelligence

Path planning in obstacle-dense environments is a key challenge in robotics, and depends on inferring scene attributes and associated uncertainties. We present a multiple-hypothesis path planner designed to navigate complex environments using obstacle detections. Path hypotheses are generated by reasoning about uncertainty and range, as initial detections are typically at far ranges with high uncertainty, before subsequent detections reduce this uncertainty. Given estimated obstacles, we build a graph of pairwise connections between objects based on the probability that the robot can safely pass between the pair. The graph is updated in real time and pruned of unsafe paths, providing probabilistic safety guarantees. The planner generates path hypotheses over this graph, then trades between safety and path length to intelligently optimize the best route. We evaluate our planner on randomly generated simulated forests, and find that in the most challenging environments, it increases the navigation success rate over an A* baseline from 20% to 75%. Results indicate that the use of evolving, range-based uncertainty and multiple hypotheses are critical for navigating dense environments.


Planning High-Level Paths in Hostile, Dynamic, and Uncertain Environments

Journal of Artificial Intelligence Research

This paper introduces and studies a graph-based variant of the path planning problem arising in hostile environments. We consider a setting where an agent (e.g. a robot) must reach a given destination while avoiding being intercepted by probabilistic entities which exist in the graph with a given probability and move according to a probabilistic motion pattern known a priori. Given a goal vertex and a deadline to reach it, the agent must compute the path to the goal that maximizes its chances of survival. We study the computational complexity of the problem, and present two algorithms for computing high quality solutions in the general case: an exact algorithm based on Mixed-Integer Nonlinear Programming, working well in instances of moderate size, and a pseudo-polynomial time heuristic algorithm allowing to solve large scale problems in reasonable time. We also consider the two limit cases where the agent can survive with probability 0 or 1, and provide specialized algorithms to detect these kinds of situations more efficiently.


Multiagent Connected Path Planning: PSPACE-Completeness and How to Deal With It

AAAI Conferences

In the Multiagent Connected Path Planning problem (MCPP), a team of agents moving in a graph-represented environment must plan a set of start-goal joint paths which ensures global connectivity at each time step, under some communication model. The decision version of this problem asking for the existence of a plan that can be executed in at most a given number of steps is claimed to be NP-complete in the literature. The NP membership proof, however, is not detailed. In this paper, we show that, in fact, even deciding whether a feasible plan exists is a PSPACE-complete problem. Furthermore, we present three algorithms adopting different search paradigms, and we empirically show that they may efficiently obtain a feasible plan, if any exists, in different settings.