Banerjee, Arunava
A Novel Kernel for Learning a Neuron Model from Spike Train Data
Fisher, Nicholas, Banerjee, Arunava
From a functional viewpoint, a spiking neuron is a device that transforms input spike trains on its various synapses into an output spike train on its axon. We demonstrate in this paper that the function mapping underlying the device can be tractably learned based on input and output spike train data alone. We begin by posing the problem in a classification based framework. We then derive a novel kernel for an SRM0 model that is based on PSP and AHP like functions. With the kernel we demonstrate how the learning problem can be posed as a Quadratic Program. Experimental results demonstrate the strength of our approach.
Dynamical Constraints on Computing with Spike Timing in the Cortex
Banerjee, Arunava, Pouget, Alexandre
If the cortex uses spike timing to compute, the timing of the spikes must be robust to perturbations. Based on a recent framework that provides a simple criterion to determine whether a spike sequence produced by a generic network is sensitive to initial conditions, and numerical simulations of a variety of network architectures, we argue within the limits set by our model of the neuron, that it is unlikely that precise sequences of spike timings are used for computation under conditions typically found in the cortex. 1 Introduction
Dynamical Constraints on Computing with Spike Timing in the Cortex
Banerjee, Arunava, Pouget, Alexandre
If the cortex uses spike timing to compute, the timing of the spikes must be robust to perturbations. Based on a recent framework that provides a simple criterion to determine whether a spike sequence produced by a generic network is sensitive to initial conditions, and numerical simulations of a variety of network architectures, we argue within the limits set by our model of the neuron, that it is unlikely that precise sequences of spike timings are used for computation under conditions typically found in the cortex. 1 Introduction