Goto

Collaborating Authors

 Bandyopadhyay, Saptarshi


Physics-Informed Machine Learning Towards A Real-Time Spacecraft Thermal Simulator

arXiv.org Artificial Intelligence

Modeling thermal states for complex space missions, such as the surface exploration of airless bodies, requires high computation, whether used in ground-based analysis for spacecraft design or during onboard reasoning for autonomous operations. For example, a finite-element thermal model with hundreds of elements can take significant time to simulate, which makes it unsuitable for onboard reasoning during time-sensitive scenarios such as descent and landing, proximity operations, or in-space assembly. Further, the lack of fast and accurate thermal modeling drives thermal designs to be more conservative and leads to spacecraft with larger mass and higher power budgets. The emerging paradigm of physics-informed machine learning (PIML) presents a class of hybrid modeling architectures that address this challenge by combining simplified physics models with machine learning (ML) models resulting in models which maintain both interpretability and robustness. Such techniques enable designs with reduced mass and power through onboard thermal-state estimation and control and may lead to improved onboard handling of off-nominal states, including unplanned down-time. The PIML model or hybrid model presented here consists of a neural network which predicts reduced nodalizations (distribution and size of coarse mesh) given on-orbit thermal load conditions, and subsequently a (relatively coarse) finite-difference model operates on this mesh to predict thermal states. We compare the computational performance and accuracy of the hybrid model to a data-driven neural net model, and a high-fidelity finite-difference model of a prototype Earth-orbiting small spacecraft. The PIML based active nodalization approach provides significantly better generalization than the neural net model and coarse mesh model, while reducing computing cost by up to 1.7x compared to the high-fidelity model.


Distributed Instruments for Planetary Surface Science: Scientific Opportunities and Technology Feasibility

arXiv.org Artificial Intelligence

In this paper, we assess the scientific promise and technology feasibility of distributed instruments for planetary science. A distributed instrument is an instrument designed to collect spatially and temporally correlated data from multiple networked, geographically distributed point sensors. Distributed instruments are ubiquitous in Earth science, where they are routinely employed for weather and climate science, seismic studies and resource prospecting, and detection of industrial emissions. However, to date, their adoption in planetary surface science has been minimal. It is natural to ask whether this lack of adoption is driven by low potential to address high-priority questions in planetary science; immature technology; or both. To address this question, we survey high-priority planetary science questions that are uniquely well-suited to distributed instruments. We identify four areas of research where distributed instruments hold promise to unlock answers that are largely inaccessible to monolithic sensors, namely, weather and climate studies of Mars; localization of seismic events on rocky and icy bodies; localization of trace gas emissions, primarily on Mars; and magnetometry studies of internal composition. Next, we survey enabling technologies for distributed sensors and assess their maturity. We identify sensor placement (including descent and landing on planetary surfaces), power, and instrument autonomy as three key areas requiring further investment to enable future distributed instruments. Overall, this work shows that distributed instruments hold great promise for planetary science, and paves the way for follow-on studies of future distributed instruments for Solar System in-situ science.


Modeling Considerations for Developing Deep Space Autonomous Spacecraft and Simulators

arXiv.org Artificial Intelligence

To extend the limited scope of autonomy used in prior missions for operation in distant and complex environments, there is a need to further develop and mature autonomy that jointly reasons over multiple subsystems, which we term system-level autonomy. System-level autonomy establishes situational awareness that resolves conflicting information across subsystems, which may necessitate the refinement and interconnection of the underlying spacecraft and environment onboard models. However, with a limited understanding of the assumptions and tradeoffs of modeling to arbitrary extents, designing onboard models to support system-level capabilities presents a significant challenge. In this paper, we provide a detailed analysis of the increasing levels of model fidelity for several key spacecraft subsystems, with the goal of informing future spacecraft functional- and system-level autonomy algorithms and the physics-based simulators on which they are validated. We do not argue for the adoption of a particular fidelity class of models but, instead, highlight the potential tradeoffs and opportunities associated with the use of models for onboard autonomy and in physics-based simulators at various fidelity levels. We ground our analysis in the context of deep space exploration of small bodies, an emerging frontier for autonomous spacecraft operation in space, where the choice of models employed onboard the spacecraft may determine mission success. We conduct our experiments in the Multi-Spacecraft Concept and Autonomy Tool (MuSCAT), a software suite for developing spacecraft autonomy algorithms.