Goto

Collaborating Authors

 Bamdev Mishra


Inexact trust-region algorithms on Riemannian manifolds

Neural Information Processing Systems

We consider an inexact variant of the popular Riemannian trust-region algorithm for structured big-data minimization problems. The proposed algorithm approximates the gradient and the Hessian in addition to the solution of a trust-region sub-problem. Addressing large-scale finite-sum problems, we specifically propose sub-sampled algorithms with a fixed bound on sub-sampled Hessian and gradient sizes, where the gradient and Hessian are computed by a random sampling technique. Numerical evaluations demonstrate that the proposed algorithms outperform state-of-the-art Riemannian deterministic and stochastic gradient algorithms across different applications.


A Dual Framework for Low-rank Tensor Completion

Neural Information Processing Systems

One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem.



Inexact trust-region algorithms on Riemannian manifolds

Neural Information Processing Systems

We consider an inexact variant of the popular Riemannian trust-region algorithm for structured big-data minimization problems. The proposed algorithm approximates the gradient and the Hessian in addition to the solution of a trust-region sub-problem. Addressing large-scale finite-sum problems, we specifically propose sub-sampled algorithms with a fixed bound on sub-sampled Hessian and gradient sizes, where the gradient and Hessian are computed by a random sampling technique. Numerical evaluations demonstrate that the proposed algorithms outperform state-of-the-art Riemannian deterministic and stochastic gradient algorithms across different applications.