Goto

Collaborating Authors

 Balestra, Chiara


On the Consistency and Robustness of Saliency Explanations for Time Series Classification

arXiv.org Artificial Intelligence

Interpretable machine learning and explainable artificial intelligence have become essential in many applications. The trade-off between interpretability and model performance is the traitor to developing intrinsic and model-agnostic interpretation methods. Although model explanation approaches have achieved significant success in vision and natural language domains, explaining time series remains challenging. The complex pattern in the feature domain, coupled with the additional temporal dimension, hinders efficient interpretation. Saliency maps have been applied to interpret time series windows as images. However, they are not naturally designed for sequential data, thus suffering various issues. This paper extensively analyzes the consistency and robustness of saliency maps for time series features and temporal attribution. Specifically, we examine saliency explanations from both perturbation-based and gradient-based explanation models in a time series classification task. Our experimental results on five real-world datasets show that they all lack consistent and robust performances to some extent. By drawing attention to the flawed saliency explanation models, we motivate to develop consistent and robust explanations for time series classification.


Redundancy-aware unsupervised rankings for collections of gene sets

arXiv.org Artificial Intelligence

The biological roles of gene sets are used to group them into collections. These collections are often characterized by being high-dimensional, overlapping, and redundant families of sets, thus precluding a straightforward interpretation and study of their content. Bioinformatics looked for solutions to reduce their dimension or increase their intepretability. One possibility lies in aggregating overlapping gene sets to create larger pathways, but the modified biological pathways are hardly biologically justifiable. We propose to use importance scores to rank the pathways in the collections studying the context from a set covering perspective. The proposed Shapley values-based scores consider the distribution of the singletons and the size of the sets in the families; Furthermore, a trick allows us to circumvent the usual exponential complexity of Shapley values' computation. Finally, we address the challenge of including a redundancy awareness in the obtained rankings where, in our case, sets are redundant if they show prominent intersections. The rankings can be used to reduce the dimension of collections of gene sets, such that they show lower redundancy and still a high coverage of the genes. We further investigate the impact of our selection on Gene Sets Enrichment Analysis. The proposed method shows a practical utility in bioinformatics to increase the interpretability of the collections of gene sets and a step forward to include redundancy into Shapley values computations.