Balbastre, Yaël
Fully Convolutional Slice-to-Volume Reconstruction for Single-Stack MRI
Young, Sean I., Balbastre, Yaël, Fischl, Bruce, Golland, Polina, Iglesias, Juan Eugenio
In magnetic resonance imaging (MRI), slice-to-volume reconstruction (SVR) refers to computational reconstruction of an unknown 3D magnetic resonance volume from stacks of 2D slices corrupted by motion. While promising, current SVR methods require multiple slice stacks for accurate 3D reconstruction, leading to long scans and limiting their use in time-sensitive applications such as fetal fMRI. Here, we propose a SVR method that overcomes the shortcomings of previous work and produces state-of-the-art reconstructions in the presence of extreme inter-slice motion. Inspired by the recent success of single-view depth estimation methods, we formulate SVR as a single-stack motion estimation task and train a fully convolutional network to predict a motion stack for a given slice stack, producing a 3D reconstruction as a byproduct of the predicted motion. Extensive experiments on the SVR of adult and fetal brains demonstrate that our fully convolutional method is twice as accurate as previous SVR methods. Our code is available at github.com/seannz/svr.
Diffeomorphic Multi-Resolution Deep Learning Registration for Applications in Breast MRI
French, Matthew G., Talou, Gonzalo D. Maso, Gamage, Thiranja P. Babarenda, Nash, Martyn P., Nielsen, Poul M., Doyle, Anthony J., Iglesias, Juan Eugenio, Balbastre, Yaël, Young, Sean I.
In breast surgical planning, accurate registration of MR images across patient positions has the potential to improve the localisation of tumours during breast cancer treatment. While learning-based registration methods have recently become the state-of-the-art approach for most medical image registration tasks, these methods have yet to make inroads into breast image registration due to certain difficulties-the lack of rich texture information in breast MR images and the need for the deformations to be diffeomophic. In this work, we propose learning strategies for breast MR image registration that are amenable to diffeomorphic constraints, together with early experimental results from in-silico and in-vivo experiments. One key contribution of this work is a registration network which produces superior registration outcomes for breast images in addition to providing diffeomorphic guarantees.
Nonlinear Markov Random Fields Learned via Backpropagation
Brudfors, Mikael, Balbastre, Yaël, Ashburner, John
Although convolutional neural networks (CNNs) currently dominate competitions on image segmentation, for neuroimaging analysis tasks, more classical generative approaches based on mixture models are still used in practice to parcellate brains. To bridge the gap between the two, in this paper we propose a marriage between a probabilistic generative model, which has been shown to be robust to variability among magnetic resonance (MR) images acquired via different imaging protocols, and a CNN. The link is in the prior distribution over the unknown tissue classes, which are classically modelled using a Markov random field. In this work we model the interactions among neighbouring pixels by a type of recurrent CNN, which can encode more complex spatial interactions. We validate our proposed model on publicly available MR data, from different centres, and show that it generalises across imaging protocols. This result demonstrates a successful and principled inclusion of a CNN in a generative model, which in turn could be adapted by any probabilistic generative approach for image segmentation.