Balakrishnan, Avinash
Model Agnostic Contrastive Explanations for Structured Data
Dhurandhar, Amit, Pedapati, Tejaswini, Balakrishnan, Avinash, Chen, Pin-Yu, Shanmugam, Karthikeyan, Puri, Ruchir
Recently, a method [7] was proposed to generate contrastive explanations for differentiable models such as deep neural networks, where one has complete access to the model. In this work, we propose a method, Model Agnostic Contrastive Explanations Method (MACEM), to generate contrastive explanations for \emph{any} classification model where one is able to \emph{only} query the class probabilities for a desired input. This allows us to generate contrastive explanations for not only neural networks, but models such as random forests, boosted trees and even arbitrary ensembles that are still amongst the state-of-the-art when learning on structured data [13]. Moreover, to obtain meaningful explanations we propose a principled approach to handle real and categorical features leading to novel formulations for computing pertinent positives and negatives that form the essence of a contrastive explanation. A detailed treatment of the different data types of this nature was not performed in the previous work, which assumed all features to be positive real valued with zero being indicative of the least interesting value. We part with this strong implicit assumption and generalize these methods so as to be applicable across a much wider range of problem settings. We quantitatively and qualitatively validate our approach over 5 public datasets covering diverse domains.
Word Mover's Embedding: From Word2Vec to Document Embedding
Wu, Lingfei, Yen, Ian E. H., Xu, Kun, Xu, Fangli, Balakrishnan, Avinash, Chen, Pin-Yu, Ravikumar, Pradeep, Witbrock, Michael J.
While the celebrated Word2Vec technique yields semantically rich representations for individual words, there has been relatively less success in extending to generate unsupervised sentences or documents embeddings. Recent work has demonstrated that a distance measure between documents called \emph{Word Mover's Distance} (WMD) that aligns semantically similar words, yields unprecedented KNN classification accuracy. However, WMD is expensive to compute, and it is hard to extend its use beyond a KNN classifier. In this paper, we propose the \emph{Word Mover's Embedding } (WME), a novel approach to building an unsupervised document (sentence) embedding from pre-trained word embeddings. In our experiments on 9 benchmark text classification datasets and 22 textual similarity tasks, the proposed technique consistently matches or outperforms state-of-the-art techniques, with significantly higher accuracy on problems of short length.
Incorporating Behavioral Constraints in Online AI Systems
Balakrishnan, Avinash, Bouneffouf, Djallel, Mattei, Nicholas, Rossi, Francesca
AI systems that learn through reward feedback about the actions they take are increasingly deployed in domains that have significant impact on our daily life. However, in many cases the online rewards should not be the only guiding criteria, as there are additional constraints and/or priorities imposed by regulations, values, preferences, or ethical principles. We detail a novel online agent that learns a set of behavioral constraints by observation and uses these learned constraints as a guide when making decisions in an online setting while still being reactive to reward feedback. To define this agent, we propose to adopt a novel extension to the classical contextual multi-armed bandit setting and we provide a new algorithm called Behavior Constrained Thompson Sampling (BCTS) that allows for online learning while obeying exogenous constraints. Our agent learns a constrained policy that implements the observed behavioral constraints demonstrated by a teacher agent, and then uses this constrained policy to guide the reward-based online exploration and exploitation. We characterize the upper bound on the expected regret of the contextual bandit algorithm that underlies our agent and provide a case study with real world data in two application domains. Our experiments show that the designed agent is able to act within the set of behavior constraints without significantly degrading its overall reward performance.
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Kumar, Abhishek, Sattigeri, Prasanna, Balakrishnan, Avinash
Disentangled representations, where the higher level data generative factors are reflected in disjoint latent dimensions, offer several benefits such as ease of deriving invariant representations, transferability to other tasks, interpretability, etc. We consider the problem of unsupervised learning of disentangled representations from large pool of unlabeled observations, and propose a variational inference based approach to infer disentangled latent factors. We introduce a regularizer on the expectation of the approximate posterior over observed data that encourages the disentanglement. We evaluate the proposed approach using several quantitative metrics and empirically observe significant gains over existing methods in terms of both disentanglement and data likelihood (reconstruction quality).