Balaji, Yogesh
MetaReg: Towards Domain Generalization using Meta-Regularization
Balaji, Yogesh, Sankaranarayanan, Swami, Chellappa, Rama
Training models that generalize to new domains at test time is a problem of fundamental importance in machine learning. In this work, we encode this notion of domain generalization using a novel regularization function. We pose the problem of finding such a regularization function in a Learning to Learn (or) meta-learning framework. The objective of domain generalization is explicitly modeled by learning a regularizer that makes the model trained on one domain to perform well on another domain. Experimental validations on computer vision and natural language datasets indicate that our method can learn regularizers that achieve good cross-domain generalization.
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs
Balaji, Yogesh, Hassani, Hamed, Chellappa, Rama, Feizi, Soheil
Building on the success of deep learning, two modern approaches to learn a probability model of the observed data are Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs). VAEs consider an explicit probability model for the data and compute a generative distribution by maximizing a variational lower-bound on the log-likelihood function. GANs, however, compute a generative model by minimizing a distance between observed and generated probability distributions without considering an explicit model for the observed data. The lack of having explicit probability models in GANs prohibits computation of sample likelihoods in their frameworks and limits their use in statistical inference problems. In this work, we show that an optimal transport GAN with the entropy regularization can be viewed as a generative model that maximizes a lower-bound on average sample likelihoods, an approach that VAEs are based on. In particular, our proof constructs an explicit probability model for GANs that can be used to compute likelihood statistics within GAN's framework. Our numerical results on several datasets demonstrate consistent trends with the proposed theory.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
Sankaranarayanan, Swami, Balaji, Yogesh, Jain, Arpit, Lim, Ser Nam, Chellappa, Rama
Visual Domain Adaptation is a problem of immense importance in computer vision. Previous approaches showcase the inability of even deep neural networks to learn informative representations across domain shift. This problem is more severe for tasks where acquiring hand labeled data is extremely hard and tedious. In this work, we focus on adapting the representations learned by segmentation networks across synthetic and real domains. Contrary to previous approaches that use a simple adversarial objective or superpixel information to aid the process, we propose an approach based on Generative Adversarial Networks (GANs) that brings the embeddings closer in the learned feature space. To showcase the generality and scalability of our approach, we show that we can achieve state of the art results on two challenging scenarios of synthetic to real domain adaptation. Additional exploratory experiments show that our approach: (1) generalizes to unseen domains and (2) results in improved alignment of source and target distributions.