Goto

Collaborating Authors

 Balaji, Yogesh


Cosmos World Foundation Model Platform for Physical AI

arXiv.org Artificial Intelligence

Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.


Edify Image: High-Quality Image Generation with Pixel Space Laplacian Diffusion Models

arXiv.org Artificial Intelligence

We introduce Edify Image, a family of diffusion models capable of generating photorealistic image content with pixel-perfect accuracy. Edify Image utilizes cascaded pixel-space diffusion models trained using a novel Laplacian diffusion process, in which image signals at different frequency bands are attenuated at varying rates. Edify Image supports a wide range of applications, including text-to-image synthesis, 4K upsampling, ControlNets, 360 HDR panorama generation, and finetuning for image customization.


One-Step Diffusion Policy: Fast Visuomotor Policies via Diffusion Distillation

arXiv.org Artificial Intelligence

Diffusion models, praised for their success in generative tasks, are increasingly being applied to robotics, demonstrating exceptional performance in behavior cloning. However, their slow generation process stemming from iterative denoising steps poses a challenge for real-time applications in resource-constrained robotics setups and dynamically changing environments. In this paper, we introduce the One-Step Diffusion Policy (OneDP), a novel approach that distills knowledge from pre-trained diffusion policies into a single-step action generator, significantly accelerating response times for robotic control tasks. We ensure the distilled generator closely aligns with the original policy distribution by minimizing the Kullback-Leibler (KL) divergence along the diffusion chain, requiring only 2%- 10% additional pre-training cost for convergence. We evaluated OneDP on 6 challenging simulation tasks as well as 4 self-designed real-world tasks using the Franka robot. The results demonstrate that OneDP not only achieves state-of-theart success rates but also delivers an order-of-magnitude improvement in inference speed, boosting action prediction frequency from 1.5 Hz to 62 Hz, establishing its potential for dynamic and computationally constrained robotic applications. We share the project page here https://research.nvidia.com/labs/dir/onedp/. Recently, Chi et al. (2023); Team et al. (2024); Reuss et al. (2023); Ze et al. (2024); Ke et al. (2024); Prasad et al. (2024) demonstrated impressive results of diffusion models in imitation learning for robot control. In particular, Chi et al. (2023) introduces the diffusion policy and achieves a state-of-the-art imitation learning performance on a variety of robotics simulation and real-world tasks. However, because of the necessity of traversing the reverse diffusion chain, the slow generation process of diffusion models presents significant limitations for their application in robotic tasks. This process involves multiple iterations to pass through the same denoising network, potentially thousands of times (Song et al., 2020a; Wang et al., 2023). Such a long inference time restricts the practicality of using the diffusion policy (Chi et al., 2023), which by default runs at 1.49 Hz, in scenarios where quick response and low computational demands are essential.


Preserve Your Own Correlation: A Noise Prior for Video Diffusion Models

arXiv.org Artificial Intelligence

Despite tremendous progress in generating high-quality images using diffusion models, synthesizing a sequence of animated frames that are both photorealistic and temporally coherent is still in its infancy. While off-the-shelf billion-scale datasets for image generation are available, collecting similar video data of the same scale is still challenging. Also, training a video diffusion model is computationally much more expensive than its image counterpart. In this work, we explore finetuning a pretrained image diffusion model with video data as a practical solution for the video synthesis task. We find that naively extending the image noise prior to video noise prior in video diffusion leads to sub-optimal performance. Our carefully designed video noise prior leads to substantially better performance. Extensive experimental validation shows that our model, Preserve Your Own Correlation (PYoCo), attains SOTA zero-shot text-to-video results on the UCF-101 and MSR-VTT benchmarks. It also achieves SOTA video generation quality on the small-scale UCF-101 benchmark with a $10\times$ smaller model using significantly less computation than the prior art.


eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers

arXiv.org Artificial Intelligence

Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis. Starting from random noise, such text-to-image diffusion models gradually synthesize images in an iterative fashion while conditioning on text prompts. We find that their synthesis behavior qualitatively changes throughout this process: Early in sampling, generation strongly relies on the text prompt to generate text-aligned content, while later, the text conditioning is almost entirely ignored. This suggests that sharing model parameters throughout the entire generation process may not be ideal. Therefore, in contrast to existing works, we propose to train an ensemble of text-to-image diffusion models specialized for different synthesis stages. To maintain training efficiency, we initially train a single model, which is then split into specialized models that are trained for the specific stages of the iterative generation process. Our ensemble of diffusion models, called eDiff-I, results in improved text alignment while maintaining the same inference computation cost and preserving high visual quality, outperforming previous large-scale text-to-image diffusion models on the standard benchmark. In addition, we train our model to exploit a variety of embeddings for conditioning, including the T5 text, CLIP text, and CLIP image embeddings. We show that these different embeddings lead to different behaviors. Notably, the CLIP image embedding allows an intuitive way of transferring the style of a reference image to the target text-to-image output. Lastly, we show a technique that enables eDiff-I's "paint-with-words" capability. A user can select the word in the input text and paint it in a canvas to control the output, which is very handy for crafting the desired image in mind. The project page is available at https://deepimagination.cc/eDiff-I/


Understanding Overparameterization in Generative Adversarial Networks

arXiv.org Machine Learning

A broad class of unsupervised deep learning methods such as Generative Adversarial Networks (GANs) involve training of overparameterized models where the number of parameters of the model exceeds a certain threshold. Indeed, most successful GANs used in practice are trained using overparameterized generator and discriminator networks, both in terms of depth and width. A large body of work in supervised learning have shown the importance of model overparameterization in the convergence of the gradient descent (GD) to globally optimal solutions. In contrast, the unsupervised setting and GANs in particular involve non-convex concave mini-max optimization problems that are often trained using Gradient Descent/Ascent (GDA). The role and benefits of model overparameterization in the convergence of GDA to a global saddle point in non-convex concave problems is far less understood. In this work, we present a comprehensive analysis of the importance of model overparameterization in GANs both theoretically and empirically. We theoretically show that in an overparameterized GAN model with a 1-layer neural network generator and a linear discriminator, GDA converges to a global saddle point of the underlying non-convex concave min-max problem. To the best of our knowledge, this is the first result for global convergence of GDA in such settings. Our theory is based on a more general result that holds for a broader class of nonlinear generators and discriminators that obey certain assumptions (including deeper generators and random feature discriminators). Our theory utilizes and builds upon a novel connection with the convergence analysis of linear timevarying dynamical systems which may have broader implications for understanding the convergence behavior of GDA for non-convex concave problems involving overparameterized models. We also empirically study the role of model overparameterization in GANs using several large-scale experiments on CIFAR-10 and Celeb-A datasets.


The Effectiveness of Memory Replay in Large Scale Continual Learning

arXiv.org Artificial Intelligence

We study continual learning in the large scale setting where tasks in the input sequence are not limited to classification, and the outputs can be of high dimension. Among multiple state-of-the-art methods, we found vanilla experience replay (ER) still very competitive in terms of both performance and scalability, despite its simplicity. However, a degraded performance is observed for ER with small memory. A further visualization of the feature space reveals that the intermediate representation undergoes a distributional drift. While existing methods usually replay only the input-output pairs, we hypothesize that their regularization effect is inadequate for complex deep models and diverse tasks with small replay buffer size. Following this observation, we propose to replay the activation of the intermediate layers in addition to the input-output pairs. Considering that saving raw activation maps can dramatically increase memory and compute cost, we propose the Compressed Activation Replay technique, where compressed representations of layer activation are saved to the replay buffer. We show that this approach can achieve superior regularization effect while adding negligible memory overhead to replay method. Experiments on both the large-scale Taskonomy benchmark with a diverse set of tasks and standard common datasets (Split-CIFAR and Split-miniImageNet) demonstrate the effectiveness of the proposed method. Humans naturally learn concepts and tasks in a sequential order without degrading performance on the previous ones.


Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets

arXiv.org Machine Learning

Adversarial training is by far the most successful strategy for improving robustness of neural networks to adversarial attacks. Despite its success as a defense mechanism, adversarial training fails to generalize well to unperturbed test set. We hypothesize that this poor generalization is a consequence of adversarial training with uniform perturbation radius around every training sample. Samples close to decision boundary can be morphed into a different class under a small perturbation budget, and enforcing large margins around these samples produce poor decision boundaries that generalize poorly. Motivated by this hypothesis, we propose instance adaptive adversarial training -- a technique that enforces sample-specific perturbation margins around every training sample. We show that using our approach, test accuracy on unperturbed samples improve with a marginal drop in robustness. Extensive experiments on CIFAR-10, CIFAR-100 and Imagenet datasets demonstrate the effectiveness of our proposed approach.


Normalized Wasserstein Distance for Mixture Distributions with Applications in Adversarial Learning and Domain Adaptation

arXiv.org Machine Learning

Understanding proper distance measures between distributions is at the core of several learning tasks such as generative models, domain adaptation, clustering, etc. In this work, we focus on {\it mixture distributions} that arise naturally in several application domains where the data contains different sub-populations. For mixture distributions, established distance measures such as the Wasserstein distance do not take into account imbalanced mixture proportions. Thus, even if two mixture distributions have identical mixture components but different mixture proportions, the Wasserstein distance between them will be large. This often leads to undesired results in distance-based learning methods for mixture distributions. In this paper, we resolve this issue by introducing {\it Normalized Wasserstein} distance. The key idea is to introduce mixture proportions as optimization variables, effectively normalizing mixture proportions in the Wasserstein formulation. Using the proposed normalized Wasserstein distance, instead of the vanilla one, leads to significant gains working with mixture distributions with imbalanced mixture proportions. We demonstrate effectiveness of the proposed distance in GANs, domain adaptation, adversarial clustering and hypothesis testing over mixture of Gaussians, MNIST, CIFAR-10, CelebA and VISDA datasets.


MetaReg: Towards Domain Generalization using Meta-Regularization

Neural Information Processing Systems

Training models that generalize to new domains at test time is a problem of fundamental importance in machine learning. In this work, we encode this notion of domain generalization using a novel regularization function. We pose the problem of finding such a regularization function in a Learning to Learn (or) meta-learning framework. The objective of domain generalization is explicitly modeled by learning a regularizer that makes the model trained on one domain to perform well on another domain. Experimental validations on computer vision and natural language datasets indicate that our method can learn regularizers that achieve good cross-domain generalization.