Baker, David
Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem
Trippe, Brian L., Yim, Jason, Tischer, Doug, Baker, David, Broderick, Tamara, Barzilay, Regina, Jaakkola, Tommi
Construction of a scaffold structure that supports a desired motif, conferring protein function, shows promise for the design of vaccines and enzymes. But a general solution to this motif-scaffolding problem remains open. Current machine-learning techniques for scaffold design are either limited to unrealistically small scaffolds (up to length 20) or struggle to produce multiple diverse scaffolds. We propose to learn a distribution over diverse and longer protein backbone structures via an E(3)-equivariant graph neural network. We develop SMCDiff to efficiently sample scaffolds from this distribution conditioned on a given motif; our algorithm is the first to theoretically guarantee conditional samples from a diffusion model in the large-compute limit. We evaluate our designed backbones by how well they align with AlphaFold2-predicted structures. We show that our method can (1) sample scaffolds up to 80 residues and (2) achieve structurally diverse scaffolds for a fixed motif.
Feature Selection Methods for Improving Protein Structure Prediction with Rosetta
Blum, Ben, Baker, David, Jordan, Michael I., Bradley, Philip, Das, Rhiju, Kim, David E.
Rosetta is one of the leading algorithms for protein structure prediction today. It is a Monte Carlo energy minimization method requiring many random restarts to find structures with low energy. In this paper we present a resampling technique for structure prediction of small alpha/beta proteins using Rosetta. From an initial roundof Rosetta sampling, we learn properties of the energy landscape that guide a subsequent round of sampling toward lower-energy structures. Rather than attempt to fit the full energy landscape, we use feature selection methods--both L1-regularized linear regression and decision trees--to identify structural features that give rise to low energy. We then enrich these structural features in the second sampling round. Results are presented across a benchmark set of nine small alpha/beta proteinsdemonstrating that our methods seldom impair, and frequently improve, Rosetta's performance.