Bais, Abdul
Bird's-Eye View to Street-View: A Survey
Bajbaa, Khawlah, Usman, Muhammad, Anwar, Saeed, Radwan, Ibrahim, Bais, Abdul
In recent years, street view imagery has grown to become one of the most important sources of geospatial data collection and urban analytics, which facilitates generating meaningful insights and assisting in decision-making. Synthesizing a street-view image from its corresponding satellite image is a challenging task due to the significant differences in appearance and viewpoint between the two domains. In this study, we screened 20 recent research papers to provide a thorough review of the state-of-the-art of how street-view images are synthesized from their corresponding satellite counterparts. The main findings are: (i) novel deep learning techniques are required for synthesizing more realistic and accurate street-view images; (ii) more datasets need to be collected for public usage; and (iii) more specific evaluation metrics need to be investigated for evaluating the generated images appropriately. We conclude that, due to applying outdated deep learning techniques, the recent literature failed to generate detailed and diverse street-view images.
Improved Crop and Weed Detection with Diverse Data Ensemble Learning in Agriculture
Asad, Muhammad Hamza, Anwar, Saeed, Bais, Abdul
Modern agriculture heavily relies on Site-Specific Farm Management practices, necessitating accurate detection, localization, and quantification of crops and weeds in the field, which can be achieved using deep learning techniques. In this regard, crop and weed-specific binary segmentation models have shown promise. However, uncontrolled field conditions limit their performance from one field to the other. To improve semantic model generalization, existing methods augment and synthesize agricultural data to account for uncontrolled field conditions. However, given highly varied field conditions, these methods have limitations. To overcome the challenges of model deterioration in such conditions, we propose utilizing data specific to other crops and weeds for our specific target problem. To achieve this, we propose a novel ensemble framework. Our approach involves utilizing different crop and weed models trained on diverse datasets and employing a teacher-student configuration. By using homogeneous stacking of base models and a trainable meta-architecture to combine their outputs, we achieve significant improvements for Canola crops and Kochia weeds on unseen test data, surpassing the performance of single semantic segmentation models. We identify the UNET meta-architecture as the most effective in this context. Finally, through ablation studies, we demonstrate and validate the effectiveness of our proposed model. We observe that including base models trained on other target crops and weeds can help generalize the model to capture varied field conditions. Lastly, we propose two novel datasets with varied conditions for comparisons.