Bair, Wyeth
Visual Motion Computation in Analog VLSI Using Pulses
Sarpeshkar, Rahul, Bair, Wyeth, Koch, Christof
The real time computation of motion from real images using a single chip with integrated sensors is a hard problem. We present two analog VLSI schemes that use pulse domain neuromorphic circuits to compute motion. Pulses of variable width, rather than graded potentials, represent a natural medium for evaluating temporal relationships.
Visual Motion Computation in Analog VLSI Using Pulses
Sarpeshkar, Rahul, Bair, Wyeth, Koch, Christof
The real time computation of motion from real images using a single chip with integrated sensors is a hard problem. Wepresent two analog VLSI schemes that use pulse domain neuromorphic circuits to compute motion. Pulses of variable width, rather than graded potentials, represent a natural medium for evaluating temporal relationships.
Visual Motion Computation in Analog VLSI Using Pulses
Sarpeshkar, Rahul, Bair, Wyeth, Koch, Christof
The real time computation of motion from real images using a single chip with integrated sensors is a hard problem. We present two analog VLSI schemes that use pulse domain neuromorphic circuits to compute motion. Pulses of variable width, rather than graded potentials, represent a natural medium for evaluating temporal relationships.
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate visionalgorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossingsusing two resistive grids with different spaceconstants. Todemonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate vision algorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossings using two resistive grids with different spaceconstants. To demonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.