Goto

Collaborating Authors

 Bai, Xuesong


VCAT: Vulnerability-aware and Curiosity-driven Adversarial Training for Enhancing Autonomous Vehicle Robustness

arXiv.org Artificial Intelligence

Autonomous vehicles (AVs) face significant threats to their safe operation in complex traffic environments. Adversarial training has emerged as an effective method of enabling AVs to preemptively fortify their robustness against malicious attacks. Train an attacker using an adversarial policy, allowing the AV to learn robust driving through interaction with this attacker. However, adversarial policies in existing methodologies often get stuck in a loop of overexploiting established vulnerabilities, resulting in poor improvement for AVs. To overcome the limitations, we introduce a pioneering framework termed Vulnerability-aware and Curiosity-driven Adversarial Training (VCAT). Specifically, during the traffic vehicle attacker training phase, a surrogate network is employed to fit the value function of the AV victim, providing dense information about the victim's inherent vulnerabilities. Subsequently, random network distillation is used to characterize the novelty of the environment, constructing an intrinsic reward to guide the attacker in exploring unexplored territories. In the victim defense training phase, the AV is trained in critical scenarios in which the pretrained attacker is positioned around the victim to generate attack behaviors. Experimental results revealed that the training methodology provided by VCAT significantly improved the robust control capabilities of learning-based AVs, outperforming both conventional training modalities and alternative reinforcement learning counterparts, with a marked reduction in crash rates. The code is available at https://github.com/caixxuan/VCAT.


AutoAttacker: A Large Language Model Guided System to Implement Automatic Cyber-attacks

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated impressive results on natural language tasks, and security researchers are beginning to employ them in both offensive and defensive systems. In cyber-security, there have been multiple research efforts that utilize LLMs focusing on the pre-breach stage of attacks like phishing and malware generation. However, so far there lacks a comprehensive study regarding whether LLM-based systems can be leveraged to simulate the post-breach stage of attacks that are typically human-operated, or "hands-on-keyboard" attacks, under various attack techniques and environments. As LLMs inevitably advance, they may be able to automate both the pre- and post-breach attack stages. This shift may transform organizational attacks from rare, expert-led events to frequent, automated operations requiring no expertise and executed at automation speed and scale. This risks fundamentally changing global computer security and correspondingly causing substantial economic impacts, and a goal of this work is to better understand these risks now so we can better prepare for these inevitable ever-more-capable LLMs on the horizon. On the immediate impact side, this research serves three purposes. First, an automated LLM-based, post-breach exploitation framework can help analysts quickly test and continually improve their organization's network security posture against previously unseen attacks. Second, an LLM-based penetration test system can extend the effectiveness of red teams with a limited number of human analysts. Finally, this research can help defensive systems and teams learn to detect novel attack behaviors preemptively before their use in the wild....