Goto

Collaborating Authors

 Bai, Xiaoyan


Learn To be Efficient: Build Structured Sparsity in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved remarkable success with their billion-level parameters, yet they incur high inference overheads. The emergence of activation sparsity in LLMs provides a natural approach to reduce this cost by involving only parts of the parameters for inference. Existing methods only focus on utilizing this naturally formed activation sparsity, overlooking the potential for further amplifying this inherent sparsity. In this paper, we hypothesize that LLMs can learn to be efficient by achieving more structured activation sparsity.To achieve this, we introduce a novel algorithm, Learn-To-be-Efficient (LTE), designed to train efficiency-aware LLMs to learn to activate fewer neurons and achieve a better trade-off between sparsity and performance. Furthermore, unlike SOTA MoEfication methods, which mainly focus on ReLU-based models, LTE can also be applied to LLMs like GPT and LLaMA with soft activation functions. We evaluate LTE on four models and eleven datasets. The experiments show that LTE achieves a better trade-off between sparsity and task performance. For instance, LTE with LLaMA provides a 1.83x-2.59x FLOPs speed-up on language generation tasks, outperforming the state-of-the-art methods.


A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity

arXiv.org Artificial Intelligence

While alignment algorithms are now commonly used to tune pre-trained language models towards a user's preferences, we lack explanations for the underlying mechanisms in which models become ``aligned'', thus making it difficult to explain phenomena like jailbreaks. In this work we study a popular algorithm, direct preference optimization (DPO), and the mechanisms by which it reduces toxicity. Namely, we first study how toxicity is represented and elicited in a pre-trained language model, GPT2-medium. We then apply DPO with a carefully crafted pairwise dataset to reduce toxicity. We examine how the resulting model averts toxic outputs, and find that capabilities learned from pre-training are not removed, but rather bypassed. We use this insight to demonstrate a simple method to un-align the model, reverting it back to its toxic behavior.