Bai, Haoyue
A Survey on Data-Centric AI: Tabular Learning from Reinforcement Learning and Generative AI Perspective
Ying, Wangyang, Wei, Cong, Gong, Nanxu, Wang, Xinyuan, Bai, Haoyue, Malarkkan, Arun Vignesh, Dong, Sixun, Wang, Dongjie, Zhang, Denghui, Fu, Yanjie
Tabular data is one of the most widely used data formats across various domains such as bioinformatics, healthcare, and marketing. As artificial intelligence moves towards a data-centric perspective, improving data quality is essential for enhancing model performance in tabular data-driven applications. This survey focuses on data-driven tabular data optimization, specifically exploring reinforcement learning (RL) and generative approaches for feature selection and feature generation as fundamental techniques for refining data spaces. Feature selection aims to identify and retain the most informative attributes, while feature generation constructs new features to better capture complex data patterns. We systematically review existing generative methods for tabular data engineering, analyzing their latest advancements, real-world applications, and respective strengths and limitations. This survey emphasizes how RL-based and generative techniques contribute to the automation and intelligence of feature engineering. Finally, we summarize the existing challenges and discuss future research directions, aiming to provide insights that drive continued innovation in this field.
Towards Data-Centric AI: A Comprehensive Survey of Traditional, Reinforcement, and Generative Approaches for Tabular Data Transformation
Wang, Dongjie, Huang, Yanyong, Ying, Wangyang, Bai, Haoyue, Gong, Nanxu, Wang, Xinyuan, Dong, Sixun, Zhe, Tao, Liu, Kunpeng, Xiao, Meng, Wang, Pengfei, Wang, Pengyang, Xiong, Hui, Fu, Yanjie
Tabular data is one of the most widely used formats across industries, driving critical applications in areas such as finance, healthcare, and marketing. In the era of data-centric AI, improving data quality and representation has become essential for enhancing model performance, particularly in applications centered around tabular data. This survey examines the key aspects of tabular data-centric AI, emphasizing feature selection and feature generation as essential techniques for data space refinement. We provide a systematic review of feature selection methods, which identify and retain the most relevant data attributes, and feature generation approaches, which create new features to simplify the capture of complex data patterns. This survey offers a comprehensive overview of current methodologies through an analysis of recent advancements, practical applications, and the strengths and limitations of these techniques. Finally, we outline open challenges and suggest future perspectives to inspire continued innovation in this field.
Deep Active Learning in the Open World
Xie, Tian, Zhang, Jifan, Bai, Haoyue, Nowak, Robert
Machine learning models deployed in open-world scenarios often encounter unfamiliar conditions and perform poorly in unanticipated situations. As AI systems advance and find application in safety-critical domains, effectively handling out-of-distribution (OOD) data is crucial to building open-world learning systems. In this work, we introduce ALOE, a novel active learning algorithm for open-world environments designed to enhance model adaptation by incorporating new OOD classes via a two-stage approach. First, diversity sampling selects a representative set of examples, followed by energy-based OOD detection to prioritize likely unknown classes for annotation. This strategy accelerates class discovery and learning, even under constrained annotation budgets. Evaluations on three long-tailed image classification benchmarks demonstrate that ALOE outperforms traditional active learning baselines, effectively expanding known categories while balancing annotation cost. Our findings reveal a crucial tradeoff between enhancing known-class performance and discovering new classes, setting the stage for future advancements in open-world machine learning.
Topology-aware Reinforcement Feature Space Reconstruction for Graph Data
Ying, Wangyang, Bai, Haoyue, Liu, Kunpeng, Fu, Yanjie
Feature space is an environment where data points are vectorized to represent the original dataset. Reconstructing a good feature space is essential to augment the AI power of data, improve model generalization, and increase the availability of downstream ML models. Existing literature, such as feature transformation and feature selection, is labor-intensive (e.g., heavy reliance on empirical experience) and mostly designed for tabular data. Moreover, these methods regard data samples as independent, which ignores the unique topological structure when applied to graph data, thus resulting in a suboptimal reconstruction feature space. Can we consider the topological information to automatically reconstruct feature space for graph data without heavy experiential knowledge? To fill this gap, we leverage topology-aware reinforcement learning to automate and optimize feature space reconstruction for graph data. Our approach combines the extraction of core subgraphs to capture essential structural information with a graph neural network (GNN) to encode topological features and reduce computing complexity. Then we introduce three reinforcement agents within a hierarchical structure to systematically generate meaningful features through an iterative process, effectively reconstructing the feature space. This framework provides a principled solution for attributed graph feature space reconstruction. The extensive experiments demonstrate the effectiveness and efficiency of including topological awareness.
Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches
Bai, Haoyue
Deep learning has been demonstrated with tremendous success in recent years. Despite so, its performance in practice often degenerates drastically when encountering out-of-distribution (OoD) data, i.e. training and test data are sampled from different distributions. In this thesis, we study ways toward robust OoD generalization for deep learning, i.e., its performance is not susceptible to distribution shift in the test data. We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition. It employs decomposed feature representation by orthogonalizing the two gradients of losses for category and context branches. Furthermore, we perform gradient-based augmentation on context-related features (e.g., styles, backgrounds, or scenes of target objects) to improve the robustness of learned representations. Results show that our approach generalizes well for different distribution shifts. We then study the problem of strengthening neural architecture search in OoD scenarios. We propose to optimize the architecture parameters that minimize the validation loss on synthetic OoD data, under the condition that corresponding network parameters minimize the training loss. Moreover, to obtain a proper validation set, we learn a conditional generator by maximizing their losses computed by different neural architectures. Results show that our approach effectively discovers robust architectures that perform well for OoD generalization.
AHA: Human-Assisted Out-of-Distribution Generalization and Detection
Bai, Haoyue, Zhang, Jifan, Nowak, Robert
Modern machine learning models deployed often encounter distribution shifts in real-world applications, manifesting as covariate or semantic out-of-distribution (OOD) shifts. These shifts give rise to challenges in OOD generalization and OOD detection. This paper introduces a novel, integrated approach AHA (Adaptive Human-Assisted OOD learning) to simultaneously address both OOD generalization and detection through a human-assisted framework by labeling data in the wild. Our approach strategically labels examples within a novel maximum disambiguation region, where the number of semantic and covariate OOD data roughly equalizes. By labeling within this region, we can maximally disambiguate the two types of OOD data, thereby maximizing the utility of the fixed labeling budget. Our algorithm first utilizes a noisy binary search algorithm that identifies the maximal disambiguation region with high probability. The algorithm then continues with annotating inside the identified labeling region, reaping the full benefit of human feedback. Extensive experiments validate the efficacy of our framework. We observed that with only a few hundred human annotations, our method significantly outperforms existing state-of-the-art methods that do not involve human assistance, in both OOD generalization and OOD detection. Code is publicly available at \url{https://github.com/HaoyueBaiZJU/aha}.
Popularity-Aware Alignment and Contrast for Mitigating Popularity Bias
Cai, Miaomiao, Chen, Lei, Wang, Yifan, Bai, Haoyue, Sun, Peijie, Wu, Le, Zhang, Min, Wang, Meng
Collaborative Filtering (CF) typically suffers from the significant challenge of popularity bias due to the uneven distribution of items in real-world datasets. This bias leads to a significant accuracy gap between popular and unpopular items. It not only hinders accurate user preference understanding but also exacerbates the Matthew effect in recommendation systems. To alleviate popularity bias, existing efforts focus on emphasizing unpopular items or separating the correlation between item representations and their popularity. Despite the effectiveness, existing works still face two persistent challenges: (1) how to extract common supervision signals from popular items to improve the unpopular item representations, and (2) how to alleviate the representation separation caused by popularity bias. In this work, we conduct an empirical analysis of popularity bias and propose Popularity-Aware Alignment and Contrast (PAAC) to address two challenges. Specifically, we use the common supervisory signals modeled in popular item representations and propose a novel popularity-aware supervised alignment module to learn unpopular item representations. Additionally, we suggest re-weighting the contrastive learning loss to mitigate the representation separation from a popularity-centric perspective. Finally, we validate the effectiveness and rationale of PAAC in mitigating popularity bias through extensive experiments on three real-world datasets. Our code is available at https://github.com/miaomiao-cai2/KDD2024-PAAC.
Double Correction Framework for Denoising Recommendation
He, Zhuangzhuang, Wang, Yifan, Yang, Yonghui, Sun, Peijie, Wu, Le, Bai, Haoyue, Gong, Jinqi, Hong, Richang, Zhang, Min
As its availability and generality in online services, implicit feedback is more commonly used in recommender systems. However, implicit feedback usually presents noisy samples in real-world recommendation scenarios (such as misclicks or non-preferential behaviors), which will affect precise user preference learning. To overcome the noisy samples problem, a popular solution is based on dropping noisy samples in the model training phase, which follows the observation that noisy samples have higher training losses than clean samples. Despite the effectiveness, we argue that this solution still has limits. (1) High training losses can result from model optimization instability or hard samples, not just noisy samples. (2) Completely dropping of noisy samples will aggravate the data sparsity, which lacks full data exploitation. To tackle the above limitations, we propose a Double Correction Framework for Denoising Recommendation (DCF), which contains two correction components from views of more precise sample dropping and avoiding more sparse data. In the sample dropping correction component, we use the loss value of the samples over time to determine whether it is noise or not, increasing dropping stability. Instead of averaging directly, we use the damping function to reduce the bias effect of outliers. Furthermore, due to the higher variance exhibited by hard samples, we derive a lower bound for the loss through concentration inequality to identify and reuse hard samples. In progressive label correction, we iteratively re-label highly deterministic noisy samples and retrain them to further improve performance. Finally, extensive experimental results on three datasets and four backbones demonstrate the effectiveness and generalization of our proposed framework.
Multimodality Invariant Learning for Multimedia-Based New Item Recommendation
Bai, Haoyue, Wu, Le, Hou, Min, Cai, Miaomiao, He, Zhuangzhuang, Zhou, Yuyang, Hong, Richang, Wang, Meng
Multimedia-based recommendation provides personalized item suggestions by learning the content preferences of users. With the proliferation of digital devices and APPs, a huge number of new items are created rapidly over time. How to quickly provide recommendations for new items at the inference time is challenging. What's worse, real-world items exhibit varying degrees of modality missing(e.g., many short videos are uploaded without text descriptions). Though many efforts have been devoted to multimedia-based recommendations, they either could not deal with new multimedia items or assumed the modality completeness in the modeling process. In this paper, we highlight the necessity of tackling the modality missing issue for new item recommendation. We argue that users' inherent content preference is stable and better kept invariant to arbitrary modality missing environments. Therefore, we approach this problem from a novel perspective of invariant learning. However, how to construct environments from finite user behavior training data to generalize any modality missing is challenging. To tackle this issue, we propose a novel Multimodality Invariant Learning reCommendation(a.k.a. MILK) framework. Specifically, MILK first designs a cross-modality alignment module to keep semantic consistency from pretrained multimedia item features. After that, MILK designs multi-modal heterogeneous environments with cyclic mixup to augment training data, in order to mimic any modality missing for invariant user preference learning. Extensive experiments on three real datasets verify the superiority of our proposed framework. The code is available at https://github.com/HaoyueBai98/MILK.
HYPO: Hyperspherical Out-of-Distribution Generalization
Bai, Haoyue, Ming, Yifei, Katz-Samuels, Julian, Li, Yixuan
Out-of-distribution (OOD) generalization is critical for machine learning models deployed in the real world. However, achieving this can be fundamentally challenging, as it requires the ability to learn invariant features across different domains or environments. In this paper, we propose a novel framework HYPO (HYPerspherical OOD generalization) that provably learns domain-invariant representations in a hyperspherical space. In particular, our hyperspherical learning algorithm is guided by intra-class variation and inter-class separation principles--ensuring that features from the same class (across different training domains) are closely aligned with their class prototypes, while different class prototypes are maximally separated. We further provide theoretical justifications on how our prototypical learning objective improves the OOD generalization bound. Through extensive experiments on challenging OOD benchmarks, we demonstrate that our approach outperforms competitive baselines and achieves superior performance. Deploying machine learning models in real-world settings presents a critical challenge of generalizing under distributional shifts. These shifts are common due to mismatches between the training and test data distributions. For instance, in autonomous driving, a model trained on in-distribution (ID) data collected under sunny weather conditions is expected to perform well in out-of-distribution (OOD) scenarios, such as rain or snow. This underscores the importance of the OOD generalization problem, which involves learning a predictor that can generalize across all possible environments, despite being trained on a finite subset of training environments. A plethora of OOD generalization algorithms has been developed in recent years (Zhou et al., 2022), where a central theme is to learn domain-invariant representations--features that are consistent and meaningful across different environments (domains) and can generalize to the unseen test environment. Recently, Ye et al. (2021) theoretically showed that the OOD generalization error can be bounded in terms of intra-class variation and inter-class separation.