Bai, Ge
Eliminating the Language Bias for Visual Question Answering with fine-grained Causal Intervention
Liu, Ying, Bai, Ge, Lu, Chenji, Li, Shilong, Zhang, Zhang, Liu, Ruifang, Guo, Wenbin
Despite the remarkable advancements in Visual Question Answering (VQA), the challenge of mitigating the language bias introduced by textual information remains unresolved. Previous approaches capture language bias from a coarse-grained perspective. However, the finer-grained information within a sentence, such as context and keywords, can result in different biases. Due to the ignorance of fine-grained information, most existing methods fail to sufficiently capture language bias. In this paper, we propose a novel causal intervention training scheme named CIBi to eliminate language bias from a finer-grained perspective. Specifically, we divide the language bias into context bias and keyword bias. We employ causal intervention and contrastive learning to eliminate context bias and improve the multi-modal representation. Additionally, we design a new question-only branch based on counterfactual generation to distill and eliminate keyword bias. Experimental results illustrate that CIBi is applicable to various VQA models, yielding competitive performance.
MT-Bench-101: A Fine-Grained Benchmark for Evaluating Large Language Models in Multi-Turn Dialogues
Bai, Ge, Liu, Jie, Bu, Xingyuan, He, Yancheng, Liu, Jiaheng, Zhou, Zhanhui, Lin, Zhuoran, Su, Wenbo, Ge, Tiezheng, Zheng, Bo, Ouyang, Wanli
The advent of Large Language Models (LLMs) has drastically enhanced dialogue systems. However, comprehensively evaluating the dialogue abilities of LLMs remains a challenge. Previous benchmarks have primarily focused on single-turn dialogues or provided coarse-grained and incomplete assessments of multi-turn dialogues, overlooking the complexity and fine-grained nuances of real-life dialogues. To address this issue, we introduce MT-Bench-101, specifically designed to evaluate the fine-grained abilities of LLMs in multi-turn dialogues. By conducting a detailed analysis of real multi-turn dialogue data, we construct a three-tier hierarchical ability taxonomy comprising 4208 turns across 1388 multi-turn dialogues in 13 distinct tasks. We then evaluate 21 popular LLMs based on MT-Bench-101, conducting comprehensive analyses from both ability and task perspectives and observing differing trends in LLMs performance across dialogue turns within various tasks. Further analysis indicates that neither utilizing common alignment techniques nor chat-specific designs has led to obvious enhancements in the multi-turn abilities of LLMs. Extensive case studies suggest that our designed tasks accurately assess the corresponding multi-turn abilities. The data and code are available at \url{https://github.com/mtbench101/mt-bench-101}.
Fusion Makes Perfection: An Efficient Multi-Grained Matching Approach for Zero-Shot Relation Extraction
Li, Shilong, Bai, Ge, Zhang, Zhang, Liu, Ying, Lu, Chenji, Guo, Daichi, Liu, Ruifang, Sun, Yong
Predicting unseen relations that cannot be observed during the training phase is a challenging task in relation extraction. Previous works have made progress by matching the semantics between input instances and label descriptions. However, fine-grained matching often requires laborious manual annotation, and rich interactions between instances and label descriptions come with significant computational overhead. In this work, we propose an efficient multi-grained matching approach that uses virtual entity matching to reduce manual annotation cost, and fuses coarse-grained recall and fine-grained classification for rich interactions with guaranteed inference speed. Experimental results show that our approach outperforms the previous State Of The Art (SOTA) methods, and achieves a balance between inference efficiency and prediction accuracy in zero-shot relation extraction tasks. Our code is available at https://github.com/longls777/EMMA.
Quantum Similarity Testing with Convolutional Neural Networks
Wu, Ya-Dong, Zhu, Yan, Bai, Ge, Wang, Yuexuan, Chiribella, Giulio
The task of testing whether two uncharacterized quantum devices behave in the same way is crucial for benchmarking near-term quantum computers and quantum simulators, but has so far remained open for continuous-variable quantum systems. In this Letter, we develop a machine learning algorithm for comparing unknown continuous variable states using limited and noisy data. The algorithm works on non-Gaussian quantum states for which similarity testing could not be achieved with previous techniques. Our approach is based on a convolutional neural network that assesses the similarity of quantum states based on a lower-dimensional state representation built from measurement data. The network can be trained offline with classically simulated data from a fiducial set of states sharing structural similarities with the states to be tested, or with experimental data generated by measurements on the fiducial states, or with a combination of simulated and experimental data. We test the performance of the model on noisy cat states and states generated by arbitrary selective number-dependent phase gates. Our network can also be applied to the problem of comparing continuous variable states across different experimental platforms, with different sets of achievable measurements, and to the problem of experimentally testing whether two states are equivalent up to Gaussian unitary transformations.