Baheti, Ashutosh
Multi-Attribute Constraint Satisfaction via Language Model Rewriting
Baheti, Ashutosh, Chakraborty, Debanjana, Brahman, Faeze, Bras, Ronan Le, Lu, Ximing, Dziri, Nouha, Choi, Yejin, Riedl, Mark, Sap, Maarten
Obeying precise constraints on top of multiple external attributes is a common computational problem underlying seemingly different domains, from controlled text generation to protein engineering. Existing language model (LM) controllability methods for multi-attribute constraint satisfaction often rely on specialized architectures or gradient-based classifiers, limiting their flexibility to work with arbitrary black-box evaluators and pretrained models. Current general-purpose large language models, while capable, cannot achieve fine-grained multi-attribute control over external attributes. Thus, we create Multi-Attribute Constraint Satisfaction (MACS), a generalized method capable of finetuning language models on any sequential domain to satisfy user-specified constraints on multiple external real-value attributes. Our method trains LMs as editors by sampling diverse multi-attribute edit pairs from an initial set of paraphrased outputs. During inference, LM iteratively improves upon its previous solution to satisfy constraints for all attributes by leveraging our designed constraint satisfaction reward. We additionally experiment with reward-weighted behavior cloning to further improve the constraint satisfaction rate of LMs. To evaluate our approach, we present a new Fine-grained Constraint Satisfaction (FineCS) benchmark, featuring two challenging tasks: (1) Text Style Transfer, where the goal is to simultaneously modify the sentiment and complexity of reviews, and (2) Protein Design, focusing on modulating fluorescence and stability of Green Fluorescent Proteins (GFP). Our empirical results show that MACS achieves the highest threshold satisfaction in both FineCS tasks, outperforming strong domain-specific baselines. Our work opens new avenues for generalized and real-value multi-attribute control, with implications for diverse applications spanning NLP and bioinformatics.
NovaCOMET: Open Commonsense Foundation Models with Symbolic Knowledge Distillation
West, Peter, Bras, Ronan Le, Sorensen, Taylor, Lin, Bill Yuchen, Jiang, Liwei, Lu, Ximing, Chandu, Khyathi, Hessel, Jack, Baheti, Ashutosh, Bhagavatula, Chandra, Choi, Yejin
We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models. Compared to previous knowledge models, NovaCOMET allows open-format relations enabling direct application to reasoning tasks; compared to general task models like Flan-T5, it explicitly centers knowledge, enabling superior performance for commonsense reasoning. NovaCOMET leverages the knowledge of opaque proprietary models to create an open knowledge pipeline. First, knowledge is symbolically distilled into NovATOMIC, a publicly-released discrete knowledge graph which can be audited, critiqued, and filtered. Next, we train NovaCOMET on NovATOMIC by fine-tuning an open-source pretrained model. NovaCOMET uses an open-format training objective, replacing the fixed relation sets of past knowledge models, enabling arbitrary structures within the data to serve as inputs or outputs. The resulting generation model, optionally augmented with human annotation, matches or exceeds comparable open task models like Flan-T5 on a range of commonsense generation tasks. NovaCOMET serves as a counterexample to the contemporary focus on instruction tuning only, demonstrating a distinct advantage to explicitly modeling commonsense knowledge as well.
Improving Language Models with Advantage-based Offline Policy Gradients
Baheti, Ashutosh, Lu, Ximing, Brahman, Faeze, Bras, Ronan Le, Sap, Maarten, Riedl, Mark
Language Models (LMs) achieve substantial language capabilities when finetuned using Reinforcement Learning with Human Feedback (RLHF). However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions as rewards. Subsequently, by using LM's internal sequence-level value estimate, A-LoL filters negative advantage (low-quality) data points during training, making it resilient to noise. Overall, A-LoL is an easy-to-implement LM training recipe that is sample-efficient and stable. We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data. We also release our experimental code. https://github.com/abaheti95/LoL-RL
Stanceosaurus: Classifying Stance Towards Multilingual Misinformation
Zheng, Jonathan, Baheti, Ashutosh, Naous, Tarek, Xu, Wei, Ritter, Alan
We present Stanceosaurus, a new corpus of 28,033 tweets in English, Hindi, and Arabic annotated with stance towards 251 misinformation claims. As far as we are aware, it is the largest corpus annotated with stance towards misinformation claims. The claims in Stanceosaurus originate from 15 fact-checking sources that cover diverse geographical regions and cultures. Unlike existing stance datasets, we introduce a more fine-grained 5-class labeling strategy with additional subcategories to distinguish implicit stance. Pre-trained transformer-based stance classifiers that are fine-tuned on our corpus show good generalization on unseen claims and regional claims from countries outside the training data. Cross-lingual experiments demonstrate Stanceosaurus' capability of training multi-lingual models, achieving 53.1 F1 on Hindi and 50.4 F1 on Arabic without any target-language fine-tuning. Finally, we show how a domain adaptation method can be used to improve performance on Stanceosaurus using additional RumourEval-2019 data. We make Stanceosaurus publicly available to the research community and hope it will encourage further work on misinformation identification across languages and cultures.