Goto

Collaborating Authors

 Baharan Mirzasoleiman


Dynamic Network Model from Partial Observations

Neural Information Processing Systems

Can evolving networks be inferred and modeled without directly observing their nodes and edges? In many applications, the edges of a dynamic network might not be observed, but one can observe the dynamics of stochastic cascading processes (e.g., information diffusion, virus propagation) occurring over the unobserved network. While there have been efforts to infer networks based on such data, providing a generative probabilistic model that is able to identify the underlying time-varying network remains an open question. Here we consider the problem of inferring generative dynamic network models based on network cascade diffusion data. We propose a novel framework for providing a non-parametric dynamic network model--based on a mixture of coupled hierarchical Dirichlet processes-- based on data capturing cascade node infection times. Our approach allows us to infer the evolving community structure in networks and to obtain an explicit predictive distribution over the edges of the underlying network--including those that were not involved in transmission of any cascade, or are likely to appear in the future. We show the effectiveness of our approach using extensive experiments on synthetic as well as real-world networks.


Fast Distributed Submodular Cover: Public-Private Data Summarization

Neural Information Processing Systems

In this paper, we introduce the public-private framework of data summarization motivated by privacy concerns in personalized recommender systems and online social services. Such systems have usually access to massive data generated by a large pool of users. A major fraction of the data is public and is visible to (and can be used for) all users. However, each user can also contribute some private data that should not be shared with other users to ensure her privacy. The goal is to provide a succinct summary of massive dataset, ideally as small as possible, from which customized summaries can be built for each user, i.e. it can contain elements from the public data (for diversity) and users' private data (for personalization). To formalize the above challenge, we assume that the scoring function according to which a user evaluates the utility of her summary satisfies submodularity, a widely used notion in data summarization applications. Thus, we model the data summarization targeted to each user as an instance of a submodular cover problem. However, when the data is massive it is infeasible to use the centralized greedy algorithm to find a customized summary even for a single user. Moreover, for a large pool of users, it is too time consuming to find such summaries separately.


Dynamic Network Model from Partial Observations

Neural Information Processing Systems

Can evolving networks be inferred and modeled without directly observing their nodes and edges? In many applications, the edges of a dynamic network might not be observed, but one can observe the dynamics of stochastic cascading processes (e.g., information diffusion, virus propagation) occurring over the unobserved network. While there have been efforts to infer networks based on such data, providing a generative probabilistic model that is able to identify the underlying time-varying network remains an open question. Here we consider the problem of inferring generative dynamic network models based on network cascade diffusion data. We propose a novel framework for providing a non-parametric dynamic network model--based on a mixture of coupled hierarchical Dirichlet processes-- based on data capturing cascade node infection times. Our approach allows us to infer the evolving community structure in networks and to obtain an explicit predictive distribution over the edges of the underlying network--including those that were not involved in transmission of any cascade, or are likely to appear in the future. We show the effectiveness of our approach using extensive experiments on synthetic as well as real-world networks.