Goto

Collaborating Authors

 Bahamou, Achraf


Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning

arXiv.org Artificial Intelligence

We propose a new per-layer adaptive step-size procedure for stochastic first-order optimization methods for minimizing empirical loss functions in deep learning, eliminating the need for the user to tune the learning rate (LR). The proposed approach exploits the layer-wise stochastic curvature information contained in the diagonal blocks of the Hessian in deep neural networks (DNNs) to compute adaptive step-sizes (i.e., LRs) for each layer. The method has memory requirements that are comparable to those of first-order methods, while its per-iteration time complexity is only increased by an amount that is roughly equivalent to an additional gradient computation. Numerical experiments show that SGD with momentum and AdamW combined with the proposed per-layer step-sizes are able to choose effective LR schedules and outperform fine-tuned LR versions of these methods as well as popular first-order and second-order algorithms for training DNNs on Autoencoder, Convolutional Neural Network (CNN) and Graph Convolutional Network (GCN) models. Finally, it is proved that an idealized version of SGD with the layer-wise step sizes converges linearly when using full-batch gradients.


A Mini-Block Natural Gradient Method for Deep Neural Networks

arXiv.org Artificial Intelligence

The training of deep neural networks (DNNs) is currently predominantly done using first-order methods. Some of these methods (e.g., Adam, AdaGrad, and RMSprop, and their variants) incorporate a small amount of curvature information by using a diagonal matrix to precondition the stochastic gradient. Recently, effective second-order methods, such as KFAC, K-BFGS, Shampoo, and TNT, have been developed for training DNNs, by preconditioning the stochastic gradient by layer-wise block-diagonal matrices. Here we propose and analyze the convergence of an approximate natural gradient method, mini-block Fisher (MBF), that lies in between these two classes of methods. Specifically, our method uses a block-diagonal approximation to the Fisher matrix, where for each layer in the DNN, whether it is convolutional or feed-forward and fully connected, the associated diagonal block is also block-diagonal and is composed of a large number of mini-blocks of modest size. Our novel approach utilizes the parallelism of GPUs to efficiently perform computations on the large number of matrices in each layer. Consequently, MBF's per-iteration computational cost is only slightly higher than it is for first-order methods. Finally, the performance of our proposed method is compared to that of several baseline methods, on both Auto-encoder and CNN problems, to validate its effectiveness both in terms of time efficiency and generalization power.


Practical Quasi-Newton Methods for Training Deep Neural Networks

arXiv.org Machine Learning

We consider the development of practical stochastic quasi-Newton, and in particular Kronecker-factored block-diagonal BFGS and L-BFGS methods, for training deep neural networks (DNNs). In DNN training, the number of variables and components of the gradient $n$ is often of the order of tens of millions and the Hessian has $n^2$ elements. Consequently, computing and storing a full $n \times n$ BFGS approximation or storing a modest number of (step, change in gradient) vector pairs for use in an L-BFGS implementation is out of the question. In our proposed methods, we approximate the Hessian by a block-diagonal matrix and use the structure of the gradient and Hessian to further approximate these blocks, each of which corresponds to a layer, as the Kronecker product of two much smaller matrices. This is analogous to the approach in KFAC, which computes a Kronecker-factored block-diagonal approximation to the Fisher matrix in a stochastic natural gradient method. Because the indefinite and highly variable nature of the Hessian in a DNN, we also propose a new damping approach to keep the upper as well as the lower bounds of the BFGS and L-BFGS approximations bounded. In tests on autoencoder feed-forward neural network models with either nine or thirteen layers applied to three datasets, our methods outperformed or performed comparably to KFAC and state-of-the-art first-order stochastic methods.