Goto

Collaborating Authors

 Bagavathiannan, Muthukumar


Toward Precise Robotic Weed Flaming Using a Mobile Manipulator with a Flamethrower

arXiv.org Artificial Intelligence

Robotic weed flaming is a new and environmentally friendly approach to weed removal in the agricultural field. Using a mobile manipulator equipped with a flamethrower, we design a new system and algorithm to enable effective weed flaming, which requires robotic manipulation with a soft and deformable end effector, as the thermal coverage of the flame is affected by dynamic or unknown environmental factors such as gravity, wind, atmospheric pressure, fuel tank pressure, and pose of the nozzle. System development includes overall design, hardware integration, and software pipeline. To enable precise weed removal, the greatest challenge is to detect and predict dynamic flame coverage in real time before motion planning, which is quite different from a conventional rigid gripper in grasping or a spray gun in painting. Based on the images from two onboard infrared cameras and the pose information of the flamethrower nozzle on a mobile manipulator, we propose a new dynamic flame coverage model. The flame model uses a center-arc curve with a Gaussian cross-section model to describe the flame coverage in real time. The experiments have demonstrated the working system and shown that our model and algorithm can achieve a mean average precision (mAP) of more than 76\% in the reprojected images during online prediction.


Multi-growth stage plant recognition: a case study of Palmer amaranth (Amaranthus palmeri) in cotton (Gossypium hirsutum)

arXiv.org Artificial Intelligence

Many advanced, image-based precision agricultural technologies for plant breeding, field crop research, and site-specific crop management hinge on the reliable detection and phenotyping of plants across highly variable morphological growth stages. Convolutional neural networks (CNNs) have shown promise for image-based plant phenotyping and weed recognition, but their ability to recognize growth stages, often with stark differences in appearance, is uncertain. Amaranthus palmeri (Palmer amaranth) is a particularly challenging weed plant in cotton (Gossypium hirsutum) production, exhibiting highly variable plant morphology both across growth stages over a growing season, as well as between plants at a given growth stage due to high genetic diversity. In this paper, we investigate eight-class growth stage recognition of A. palmeri in cotton as a challenging model for You Only Look Once (YOLO) architectures. We compare 26 different architecture variants from YOLO v3, v5, v6, v6 3.0, v7, and v8 on an eight-class growth stage dataset of A. palmeri. The highest mAP@[0.5:0.95] for recognition of all growth stage classes was 47.34% achieved by v8-X, with inter-class confusion across visually similar growth stages. With all growth stages grouped as a single class, performance increased, with a maximum mean average precision (mAP@[0.5:0.95]) of 67.05% achieved by v7-Original. Single class recall of up to 81.42% was achieved by v5-X, and precision of up to 89.72% was achieved by v8-X. Class activation maps (CAM) were used to understand model attention on the complex dataset. Fewer classes, grouped by visual or size features improved performance over the ground-truth eight-class dataset. Successful growth stage detection highlights the substantial opportunity for improving plant phenotyping and weed recognition technologies with open-source object detection architectures.