Baek, Stephen
FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning
Mueller, Brianna, Street, W. Nick, Baek, Stephen, Lin, Qihang, Yang, Jingyi, Huang, Yankun
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy. However, existing FL paradigms face challenges due to heterogeneity in client data distributions and system capabilities. Personalized federated learning (pFL) has been proposed to mitigate these problems, but often requires a shared model architecture and a central entity for parameter aggregation, resulting in scalability and communication issues. More recently, model-heterogeneous FL has gained attention due to its ability to support diverse client models, but existing methods are limited by their dependence on a centralized framework, synchronized training, and publicly available datasets. To address these limitations, we introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning. Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information. Experimental results show that FedPAE outperforms existing state-of-the-art pFL algorithms, effectively managing diverse client capabilities and demonstrating robustness against statistical heterogeneity.
Projected Generative Diffusion Models for Constraint Satisfaction
Christopher, Jacob K, Baek, Stephen, Fioretto, Ferdinando
Diffusion models are a class of generative models that function by progressively introducing noise into data and then methodically demonising it [17, 11]. They have revolutionized high-fidelity creation of complex data, and their applications have rapidly expanded beyond mere image synthesis, finding relevance in areas such as engineering [22, 24], automation [3, 13], chemistry [1, 12], and scientific research [2, 6]. Although diffusion models excel at generating content that is coherent and aligns closely with the original data distribution, their direct application in scenarios requiring stringent adherence to predefined criteria poses significant challenges. Particularly in domains where the generated data needs to not only resemble real-world examples but also rigorously comply with established specifications, physical laws, or engineering principles, conventional diffusion models are unable to ensure this level of precision. Given these limitations, one may consider an alternative approach: training a diffusion model on a data distribution that already aligns with these constraints.
Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions
Choi, Joseph B., Nguyen, Phong C. H., Sen, Oishik, Udaykumar, H. S., Baek, Stephen
Energetic materials (EM) cover a wide spectrum of propellants, pyrotechnics, and explosives and are key components in military applications for propulsion and munition systems and in civilian applications such as construction and mining [1]. Heterogenous/composite EMs have complex microstructures which significantly influence--along with chemistry--the property and performance of these materials [2-8]. There is increasing research interest in controlling the microstructure of EM, to engineer their properties and performance for targeted functional specificity [9-10]. EMs are typically solid-solid composites of organic energetic crystals (commonly CHNO compounds), inclusions (i.e., metals, nanoparticles), and plastic binders. The CHNO materials are commonly categorized based on how sensitive they are to an external load/mechanical insult. They can range f rom'insensitive' (such as TATB - based EMs [11]) to'highly sensitive' (PETN-based EMs [12-13]) with others such as HMX, CL-20, and RDX ranging in between [14]. The sensitivity is closely connected with the molecular structure of these species of EMs within the CHNO family. However, when they are formed into propellants and explosives, the sensitivity is also impacted by the physical structure, composition, and formulation of the material mixtures, as reviewed by Handley et al. [1]. In other words, the design of a mixture and its microstructure can define the overall properties and performance characteristics of formed EM, thus opening the possibility of systematic methods to engineer materials by their design.
PARC: Physics-Aware Recurrent Convolutional Neural Networks to Assimilate Meso-scale Reactive Mechanics of Energetic Materials
Nguyen, Phong C. H., Nguyen, Yen-Thi, Choi, Joseph B., Seshadri, Pradeep K., Udaykumar, H. S., Baek, Stephen
Energetic materials (EM) such as propellants, explosives, and pyrotechnics are key components in many military and civilian applications. EMs are composites of organic crystals, plasticizers, metals, and other inclusions, forming complex microstructural morphologies, which strongly influence the properties and performance characteristics of these materials (1). For instance, the sensitivity to impact and shock loading--one of the key performance parameters for the design of safe and reliable EMs--is strongly influenced by their microstructures (2-4). Voids, cracks, and interfaces in EM microstructures are potential sites for energy localization, i.e., the formation of hightemperature regions called "hotspots" (5-8). Such hotspots are considered to be critical if they grow and produce steady deflagration fronts (9). If a sufficient number of such critical hotspots are generated in the microstructure, chemical energy release can be rapid enough to couple with the incident shock wave, initiating a detonation. Therefore, microstructural features localize energy release at hotspots and shock-microstructure interactions can lead to a shock-to-detonation transition in EMs. 1
A physics-aware deep learning model for energy localization in multiscale shock-to-detonation simulations of heterogeneous energetic materials
Nguyen, Phong C. H., Nguyen, Yen-Thi, Seshadri, Pradeep K., Choi, Joseph B., Udaykumar, H. S., Baek, Stephen
Predictive simulations of the shock-to-detonation transition (SDT) in heterogeneous energetic materials (EM) are vital to the design and control of their energy release and sensitivity. Due to the complexity of the thermo-mechanics of EM during the SDT, both macro-scale response and sub-grid mesoscale energy localization must be captured accurately. This work proposes an efficient and accurate multiscale framework for SDT simulations of EM. We introduce a new approach for SDT simulation by using deep learning to model the mesoscale energy localization of shock-initiated EM microstructures. The proposed multiscale modeling framework is divided into two stages. First, a physics-aware recurrent convolutional neural network (PARC) is used to model the mesoscale energy localization of shock-initiated heterogeneous EM microstructures. PARC is trained using direct numerical simulations (DNS) of hotspot ignition and growth within microstructures of pressed HMX material subjected to different input shock strengths. After training, PARC is employed to supply hotspot ignition and growth rates for macroscale SDT simulations. We show that PARC can play the role of a surrogate model in a multiscale simulation framework, while drastically reducing the computation cost and providing improved representations of the sub-grid physics. The proposed multiscale modeling approach will provide a new tool for material scientists in designing high-performance and safer energetic materials.
Challenges and opportunities for machine learning in multiscale computational modeling
Nguyen, Phong C. H., Choi, Joseph B., Udaykumar, H. S., Baek, Stephen
Abstract: Many mechanical engineering applications call for multiscale computational modeling and simulation. However, solving for complex multiscale systems remains computationally onerous due to the high dimensionality of the solution space. Recently, machine learning (ML) has emerged as a promising solution that can either serve as a surrogate for, accelerate or augment traditional numerical methods. Pioneering work has demonstrated that ML provides solutions to governing systems of equations with comparable accuracy to those obtained using direct numerical methods, but with significantly faster computational speed. These high-speed, high-fidelity estimations can facilitate the solving of complex multiscale systems by providing a better initial solution to traditional solvers. This paper provides a perspective on the opportunities and challenges of using ML for complex multiscale modeling and simulation. We first outline the current state-of-the-art ML approaches for simulating multiscale systems and highlight some of the landmark developments. Next, we discuss current challenges for ML in multiscale computational modeling, such as the data and discretization dependence, interpretability, and data sharing and collaborative platform development. Finally, we suggest several potential research directions for the future. Keywords: Machine learning, Artificial intelligence, Computational modeling, Multiscale modeling 1 Introduction Multiscale computational modeling has emerged as a central part of many mechanical engineering applications in recent years.
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Pati, Sarthak, Baid, Ujjwal, Edwards, Brandon, Sheller, Micah, Wang, Shih-Han, Reina, G Anthony, Foley, Patrick, Gruzdev, Alexey, Karkada, Deepthi, Davatzikos, Christos, Sako, Chiharu, Ghodasara, Satyam, Bilello, Michel, Mohan, Suyash, Vollmuth, Philipp, Brugnara, Gianluca, Preetha, Chandrakanth J, Sahm, Felix, Maier-Hein, Klaus, Zenk, Maximilian, Bendszus, Martin, Wick, Wolfgang, Calabrese, Evan, Rudie, Jeffrey, Villanueva-Meyer, Javier, Cha, Soonmee, Ingalhalikar, Madhura, Jadhav, Manali, Pandey, Umang, Saini, Jitender, Garrett, John, Larson, Matthew, Jeraj, Robert, Currie, Stuart, Frood, Russell, Fatania, Kavi, Huang, Raymond Y, Chang, Ken, Balana, Carmen, Capellades, Jaume, Puig, Josep, Trenkler, Johannes, Pichler, Josef, Necker, Georg, Haunschmidt, Andreas, Meckel, Stephan, Shukla, Gaurav, Liem, Spencer, Alexander, Gregory S, Lombardo, Joseph, Palmer, Joshua D, Flanders, Adam E, Dicker, Adam P, Sair, Haris I, Jones, Craig K, Venkataraman, Archana, Jiang, Meirui, So, Tiffany Y, Chen, Cheng, Heng, Pheng Ann, Dou, Qi, Kozubek, Michal, Lux, Filip, Michálek, Jan, Matula, Petr, Keřkovský, Miloš, Kopřivová, Tereza, Dostál, Marek, Vybíhal, Václav, Vogelbaum, Michael A, Mitchell, J Ross, Farinhas, Joaquim, Maldjian, Joseph A, Yogananda, Chandan Ganesh Bangalore, Pinho, Marco C, Reddy, Divya, Holcomb, James, Wagner, Benjamin C, Ellingson, Benjamin M, Cloughesy, Timothy F, Raymond, Catalina, Oughourlian, Talia, Hagiwara, Akifumi, Wang, Chencai, To, Minh-Son, Bhardwaj, Sargam, Chong, Chee, Agzarian, Marc, Falcão, Alexandre Xavier, Martins, Samuel B, Teixeira, Bernardo C A, Sprenger, Flávia, Menotti, David, Lucio, Diego R, LaMontagne, Pamela, Marcus, Daniel, Wiestler, Benedikt, Kofler, Florian, Ezhov, Ivan, Metz, Marie, Jain, Rajan, Lee, Matthew, Lui, Yvonne W, McKinley, Richard, Slotboom, Johannes, Radojewski, Piotr, Meier, Raphael, Wiest, Roland, Murcia, Derrick, Fu, Eric, Haas, Rourke, Thompson, John, Ormond, David Ryan, Badve, Chaitra, Sloan, Andrew E, Vadmal, Vachan, Waite, Kristin, Colen, Rivka R, Pei, Linmin, Ak, Murat, Srinivasan, Ashok, Bapuraj, J Rajiv, Rao, Arvind, Wang, Nicholas, Yoshiaki, Ota, Moritani, Toshio, Turk, Sevcan, Lee, Joonsang, Prabhudesai, Snehal, Morón, Fanny, Mandel, Jacob, Kamnitsas, Konstantinos, Glocker, Ben, Dixon, Luke V M, Williams, Matthew, Zampakis, Peter, Panagiotopoulos, Vasileios, Tsiganos, Panagiotis, Alexiou, Sotiris, Haliassos, Ilias, Zacharaki, Evangelia I, Moustakas, Konstantinos, Kalogeropoulou, Christina, Kardamakis, Dimitrios M, Choi, Yoon Seong, Lee, Seung-Koo, Chang, Jong Hee, Ahn, Sung Soo, Luo, Bing, Poisson, Laila, Wen, Ning, Tiwari, Pallavi, Verma, Ruchika, Bareja, Rohan, Yadav, Ipsa, Chen, Jonathan, Kumar, Neeraj, Smits, Marion, van der Voort, Sebastian R, Alafandi, Ahmed, Incekara, Fatih, Wijnenga, Maarten MJ, Kapsas, Georgios, Gahrmann, Renske, Schouten, Joost W, Dubbink, Hendrikus J, Vincent, Arnaud JPE, Bent, Martin J van den, French, Pim J, Klein, Stefan, Yuan, Yading, Sharma, Sonam, Tseng, Tzu-Chi, Adabi, Saba, Niclou, Simone P, Keunen, Olivier, Hau, Ann-Christin, Vallières, Martin, Fortin, David, Lepage, Martin, Landman, Bennett, Ramadass, Karthik, Xu, Kaiwen, Chotai, Silky, Chambless, Lola B, Mistry, Akshitkumar, Thompson, Reid C, Gusev, Yuriy, Bhuvaneshwar, Krithika, Sayah, Anousheh, Bencheqroun, Camelia, Belouali, Anas, Madhavan, Subha, Booth, Thomas C, Chelliah, Alysha, Modat, Marc, Shuaib, Haris, Dragos, Carmen, Abayazeed, Aly, Kolodziej, Kenneth, Hill, Michael, Abbassy, Ahmed, Gamal, Shady, Mekhaimar, Mahmoud, Qayati, Mohamed, Reyes, Mauricio, Park, Ji Eun, Yun, Jihye, Kim, Ho Sung, Mahajan, Abhishek, Muzi, Mark, Benson, Sean, Beets-Tan, Regina G H, Teuwen, Jonas, Herrera-Trujillo, Alejandro, Trujillo, Maria, Escobar, William, Abello, Ana, Bernal, Jose, Gómez, Jhon, Choi, Joseph, Baek, Stephen, Kim, Yusung, Ismael, Heba, Allen, Bryan, Buatti, John M, Kotrotsou, Aikaterini, Li, Hongwei, Weiss, Tobias, Weller, Michael, Bink, Andrea, Pouymayou, Bertrand, Shaykh, Hassan F, Saltz, Joel, Prasanna, Prateek, Shrestha, Sampurna, Mani, Kartik M, Payne, David, Kurc, Tahsin, Pelaez, Enrique, Franco-Maldonado, Heydy, Loayza, Francis, Quevedo, Sebastian, Guevara, Pamela, Torche, Esteban, Mendoza, Cristobal, Vera, Franco, Ríos, Elvis, López, Eduardo, Velastin, Sergio A, Ogbole, Godwin, Oyekunle, Dotun, Odafe-Oyibotha, Olubunmi, Osobu, Babatunde, Shu'aibu, Mustapha, Dorcas, Adeleye, Soneye, Mayowa, Dako, Farouk, Simpson, Amber L, Hamghalam, Mohammad, Peoples, Jacob J, Hu, Ricky, Tran, Anh, Cutler, Danielle, Moraes, Fabio Y, Boss, Michael A, Gimpel, James, Veettil, Deepak Kattil, Schmidt, Kendall, Bialecki, Brian, Marella, Sailaja, Price, Cynthia, Cimino, Lisa, Apgar, Charles, Shah, Prashant, Menze, Bjoern, Barnholtz-Sloan, Jill S, Martin, Jason, Bakas, Spyridon
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25, 256 MRI scans from 6, 314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.
Incremental ELMVIS for unsupervised learning
Akusok, Anton, Eirola, Emil, Miche, Yoan, Oliver, Ian, Björk, Kaj-Mikael, Gritsenko, Andrey, Baek, Stephen, Lendasse, Amaury
The ELMVIS method [5] is an interesting Machine Learning method that optimize a cost function by changing assignment between two sets of samples, or by changing the order of samples in one set which is the same. The cost function is learned by an Extreme Learning Machine (ELM) [13, 12, 10], a fast method for training feed-forward neural networks with convenient mathematical properties [11, 14]. Such optimization problem is found in various applications like open-loop Traveling Salesman problem [7] or clustering [4] (mapping between samples and clusters), but not in Neural Networks. ELMVIS is unique in a sense that it combines the optimal assignment task with neural network optimization problem; the latter is optimized at each step of ELMVIS. A recent advance in ELMVIS method [2] set its runtime speed comparable or faster than other state-of-the-art methods in visualization application.
What does AI see? Deep segmentation networks discover biomarkers for lung cancer survival
Baek, Stephen, He, Yusen, Allen, Bryan G., Buatti, John M., Smith, Brian J., Plichta, Kristin A., Seyedin, Steven N., Gannon, Maggie, Cabel, Katherine R., Kim, Yusung, Wu, Xiaodong
Non-small-cell lung cancer (NSCLC) represents approximately 80-85% of lung cancer diagnoses and is the leading cause of cancer-related death worldwide. Recent studies indicate that image-based radiomics features from positron emission tomography-computed tomography (PET/CT) images have predictive power on NSCLC outcomes. To this end, easily calculated functional features such as the maximum and the mean of standard uptake value (SUV) and total lesion glycolysis (TLG) are most commonly used for NSCLC prognostication, but their prognostic value remains controversial. Meanwhile, convolutional neural networks (CNN) are rapidly emerging as a new premise for cancer image analysis, with significantly enhanced predictive power compared to other hand-crafted radiomics features. Here we show that CNN trained to perform the tumor segmentation task, with no other information than physician contours, identify a rich set of survival-related image features with remarkable prognostic value. In a retrospective study on 96 NSCLC patients before stereotactic-body radiotherapy (SBRT), we found that the CNN segmentation algorithm (U-Net) trained for tumor segmentation in PET/CT images, contained features having strong correlation with 2- and 5-year overall and disease-specific survivals. The U-net algorithm has not seen any other clinical information (e.g. survival, age, smoking history) than the images and the corresponding tumor contours provided by physicians. Furthermore, through visualization of the U-Net, we also found convincing evidence that the regions of progression appear to match with the regions where the U-Net features identified patterns that predicted higher likelihood of death. We anticipate our findings will be a starting point for more sophisticated non-intrusive patient specific cancer prognosis determination.
Wall Stress Estimation of Cerebral Aneurysm based on Zernike Convolutional Neural Networks
Sun, Zhiyu, Lu, Jia, Baek, Stephen
Convolutional neural networks (ConvNets) have demonstrated an exceptional capacity to discern visual patterns from digital images and signals. Unfortunately, such powerful ConvNets do not generalize well to arbitrary-shaped manifolds, where data representation does not fit into a tensor-like grid. Hence, many fields of science and engineering, where data points possess some manifold structure, cannot enjoy the full benefits of the recent advances in ConvNets. The aneurysm wall stress estimation problem introduced in this paper is one of many such problems. The problem is well-known to be of a paramount clinical importance, but yet, traditional ConvNets cannot be applied due to the manifold structure of the data, neither does the state-of-the-art geometric ConvNets perform well. Motivated by this, we propose a new geometric ConvNet method named ZerNet, which builds upon our novel mathematical generalization of convolution and pooling operations on manifolds. Our study shows that the ZerNet outperforms the other state-of-the-art geometric ConvNets in terms of accuracy.