Back, Trevor
Game Plan: What AI can do for Football, and What Football can do for AI
Tuyls, Karl, Omidshafiei, Shayegan, Muller, Paul, Wang, Zhe, Connor, Jerome, Hennes, Daniel, Graham, Ian, Spearman, William, Waskett, Tim, Steele, Dafydd, Luc, Pauline, Recasens, Adria, Galashov, Alexandre, Thornton, Gregory, Elie, Romuald, Sprechmann, Pablo, Moreno, Pol, Cao, Kris, Garnelo, Marta, Dutta, Praneet, Valko, Michal, Heess, Nicolas, Bridgland, Alex, Perolat, Julien, De Vylder, Bart, Eslami, Ali, Rowland, Mark, Jaegle, Andrew, Munos, Remi, Back, Trevor, Ahamed, Razia, Bouton, Simon, Beauguerlange, Nathalie, Broshear, Jackson, Graepel, Thore, Hassabis, Demis
The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented analytics possibilities in various team and individual sports, including baseball, basketball, and tennis. More recently, AI techniques have been applied to football, due to a huge increase in data collection by professional teams, increased computational power, and advances in machine learning, with the goal of better addressing new scientific challenges involved in the analysis of both individual players' and coordinated teams' behaviors. The research challenges associated with predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision. In this paper, we provide an overarching perspective highlighting how the combination of these fields, in particular, forms a unique microcosm for AI research, while offering mutual benefits for professional teams, spectators, and broadcasters in the years to come. We illustrate that this duality makes football analytics a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI. We review the state-of-the-art and exemplify the types of analysis enabled by combining the aforementioned fields, including illustrative examples of counterfactual analysis using predictive models, and the combination of game-theoretic analysis of penalty kicks with statistical learning of player attributes. We conclude by highlighting envisioned downstream impacts, including possibilities for extensions to other sports (real and virtual).
Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy
Nikolov, Stanislav, Blackwell, Sam, Mendes, Ruheena, De Fauw, Jeffrey, Meyer, Clemens, Hughes, Cían, Askham, Harry, Romera-Paredes, Bernardino, Karthikesalingam, Alan, Chu, Carlton, Carnell, Dawn, Boon, Cheng, D'Souza, Derek, Moinuddin, Syed Ali, Sullivan, Kevin, Consortium, DeepMind Radiographer, Montgomery, Hugh, Rees, Geraint, Sharma, Ricky, Suleyman, Mustafa, Back, Trevor, Ledsam, Joseph R., Ronneberger, Olaf
Over half a million individuals are diagnosed with head and neck cancer each year worldwide. Radiotherapy is an important curative treatment for this disease, but it requires manually intensive delineation of radiosensitive organs at risk (OARs). This planning process can delay treatment commencement. While auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying and achieving expert performance remain. Adopting a deep learning approach, we demonstrate a 3D U-Net architecture that achieves performance similar to experts in delineating a wide range of head and neck OARs. The model was trained on a dataset of 663 deidentified computed tomography (CT) scans acquired in routine clinical practice and segmented according to consensus OAR definitions. We demonstrate its generalisability through application to an independent test set of 24 CT scans available from The Cancer Imaging Archive collected at multiple international sites previously unseen to the model, each segmented by two independent experts and consisting of 21 OARs commonly segmented in clinical practice. With appropriate validation studies and regulatory approvals, this system could improve the effectiveness of radiotherapy pathways.