Goto

Collaborating Authors

 Bachman, Philip


Video Occupancy Models

arXiv.org Artificial Intelligence

We introduce a new family of video prediction models designed to support downstream control tasks. We call these models Video Occupancy models (VOCs). VOCs operate in a compact latent space, thus avoiding the need to make predictions about individual pixels. Unlike prior latent-space world models, VOCs directly predict the discounted distribution of future states in a single step, thus avoiding the need for multistep roll-outs. We show that both properties are beneficial when building predictive models of video for use in downstream control.


Ignorance is Bliss: Robust Control via Information Gating

arXiv.org Artificial Intelligence

Informational parsimony provides a useful inductive bias for learning representations that achieve better generalization by being robust to noise and spurious correlations. We propose \textit{information gating} as a way to learn parsimonious representations that identify the minimal information required for a task. When gating information, we can learn to reveal as little information as possible so that a task remains solvable, or hide as little information as possible so that a task becomes unsolvable. We gate information using a differentiable parameterization of the signal-to-noise ratio, which can be applied to arbitrary values in a network, e.g., erasing pixels at the input layer or activations in some intermediate layer. When gating at the input layer, our models learn which visual cues matter for a given task. When gating intermediate layers, our models learn which activations are needed for subsequent stages of computation. We call our approach \textit{InfoGating}. We apply InfoGating to various objectives such as multi-step forward and inverse dynamics models, Q-learning, and behavior cloning, highlighting how InfoGating can naturally help in discarding information not relevant for control. Results show that learning to identify and use minimal information can improve generalization in downstream tasks. Policies based on InfoGating are considerably more robust to irrelevant visual features, leading to improved pretraining and finetuning of RL models.


Deep Reinforcement and InfoMax Learning

arXiv.org Machine Learning

We begin with the hypothesis that a model-free agent whose representations are predictive of properties of future states (beyond expected rewards) will be more capable of solving and adapting to new RL problems. To test that hypothesis, we introduce an objective based on Deep InfoMax (DIM) which trains the agent to predict the future by maximizing the mutual information between its internal representation of successive timesteps. We test our approach in several synthetic settings, where it successfully learns representations that are predictive of the future. Finally, we augment C51, a strong RL baseline, with our temporal DIM objective and demonstrate improved performance on a continual learning task and on the recently introduced Procgen environment.


Data-Efficient Reinforcement Learning with Self-Predictive Representations

arXiv.org Machine Learning

While deep reinforcement learning excels at solving tasks where large amounts of data can be collected through virtually unlimited interaction with the environment, learning from limited interaction remains a key challenge. We posit that an agent can learn more efficiently if we augment reward maximization with self-supervised objectives based on structure in its visual input and sequential interaction with the environment. Our method, Self-Predictive Representations (SPR), trains an agent to predict its own latent state representations multiple steps into the future. We compute target representations for future states using an encoder which is an exponential moving average of the agent's parameters and we make predictions using a learned transition model. On its own, this future prediction objective outperforms prior methods for sample-efficient deep RL from pixels. We further improve performance by adding data augmentation to the future prediction loss, which forces the agent's representations to be consistent across multiple views of an observation. Our full self-supervised objective, which combines future prediction and data augmentation, achieves a median human-normalized score of 0.415 on Atari in a setting limited to 100k steps of environment interaction, which represents a 55% relative improvement over the previous state-of-the-art. Notably, even in this limited data regime, SPR exceeds expert human scores on 7 out of 26 games. The code associated with this work is available at https: //github.com/mila-iqia/spr.


Learning Representations by Maximizing Mutual Information Across Views

Neural Information Processing Systems

We propose an approach to self-supervised representation learning based on maximizing mutual information between features extracted from multiple views of a shared context. For example, one could produce multiple views of a local spatio-temporal context by observing it from different locations (e.g., camera positions within a scene), and via different modalities (e.g., tactile, auditory, or visual). Or, an ImageNet image could provide a context from which one produces multiple views by repeatedly applying data augmentation. Maximizing mutual information between features extracted from these views requires capturing information about high-level factors whose influence spans multiple views โ€“ e.g., presence of certain objects or occurrence of certain events. Following our proposed approach, we develop a model which learns image representations that significantly outperform prior methods on the tasks we consider.


Learning Representations by Maximizing Mutual Information Across Views

arXiv.org Machine Learning

We propose an approach to self-supervised representation learning based on maximizing mutual information between features extracted from multiple views of a shared context. For example, a context could be an image from ImageNet, and multiple views of the context could be generated by repeatedly applying data augmentation to the image. Following this approach, we develop a new model which maximizes mutual information between features extracted at multiple scales from independently-augmented copies of each input. Our model significantly outperforms prior work on the tasks we consider. Most notably, it achieves over 60% accuracy on ImageNet using the standard linear evaluation protocol. This improves on prior results by over 4% (absolute). On Places205, using the representations learned on ImageNet, our model achieves 50% accuracy. This improves on prior results by 2% (absolute). When we extend our model to use mixture-based representations, segmentation behaviour emerges as a natural side-effect.


Learning Invariances for Policy Generalization

arXiv.org Artificial Intelligence

While recent progress has spawned very powerful machine learning systems, those agents remain extremely specialized and fail to transfer the knowledge they gain to similar yet unseen tasks. In this paper, we study a simple reinforcement learning problem and focus on learning policies that encode the proper invariances for generalization to different settings. We evaluate three potential methods for policy generalization: data augmentation, meta-learning and adversarial training. We find our data augmentation method to be effective, and study the potential of meta-learning and adversarial learning as alternative task-agnostic approaches. Keywords: reinforcement learning, generalization, data augmentation, meta-learning, adversarial learning.


VFunc: a Deep Generative Model for Functions

arXiv.org Machine Learning

We introduce a deep generative model for functions. Our model provides a joint distribution p(f, z) over functions f and latent variables z which lets us efficiently sample from the marginal p(f) and maximize a variational lower bound on the entropy H(f). We can thus maximize objectives of the form E_{f~p(f)}[R(f)] + c*H(f), where R(f) denotes, e.g., a data log-likelihood term or an expected reward. Such objectives encompass Bayesian deep learning in function space, rather than parameter space, and Bayesian deep RL with representations of uncertainty that offer benefits over bootstrapping and parameter noise. In this short paper we describe our model, situate it in the context of prior work, and present proof-of-concept experiments for regression and RL.


Deep Reinforcement Learning That Matters

AAAI Conferences

In recent years, significant progress has been made in solving challenging problems across various domains using deep reinforcement learning (RL). Reproducing existing work and accurately judging the improvements offered by novel methods is vital to sustaining this progress. Unfortunately, reproducing results for state-of-the-art deep RL methods is seldom straightforward. In particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make reported results tough to interpret. Without significance metrics and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the prior state-of-the-art are meaningful. In this paper, we investigate challenges posed by reproducibility, proper experimental techniques, and reporting procedures. We illustrate the variability in reported metrics and results when comparing against common baselines and suggest guidelines to make future results in deep RL more reproducible. We aim to spur discussion about how to ensure continued progress in the field by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.


Deep Reinforcement Learning that Matters

arXiv.org Machine Learning

In recent years, significant progress has been made in solving challenging problems across various domains using deep reinforcement learning (RL). Reproducing existing work and accurately judging the improvements offered by novel methods is vital to sustaining this progress. Unfortunately, reproducing results for state-of-the-art deep RL methods is seldom straightforward. In particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make reported results tough to interpret. Without significance metrics and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the prior state-of-the-art are meaningful. In this paper, we investigate challenges posed by reproducibility, proper experimental techniques, and reporting procedures. We illustrate the variability in reported metrics and results when comparing against common baselines and suggest guidelines to make future results in deep RL more reproducible. We aim to spur discussion about how to ensure continued progress in the field by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.