Bacchiani, Michiel
Adaptive Dropout for Pruning Conformers
Kubo, Yotaro, Cai, Xingyu, Bacchiani, Michiel
This paper proposes a method to effectively perform joint training-and-pruning based on adaptive dropout layers with unit-wise retention probabilities. The proposed method is based on the estimation of a unit-wise retention probability in a dropout layer. A unit that is estimated to have a small retention probability can be considered to be prunable. The retention probability of the unit is estimated using back-propagation and the Gumbel-Softmax technique. This pruning method is applied at several application points in Conformers such that the effective number of parameters can be significantly reduced. Specifically, adaptive dropout layers are introduced in three locations in each Conformer block: (a) the hidden layer of the feed-forward-net component, (b) the query vectors and the value vectors of the self-attention component, and (c) the input vectors of the LConv component. The proposed method is evaluated by conducting a speech recognition experiment on the LibriSpeech task. It was shown that this approach could simultaneously achieve a parameter reduction and accuracy improvement. The word error rates improved by approx 1% while reducing the number of parameters by 54%.
Miipher: A Robust Speech Restoration Model Integrating Self-Supervised Speech and Text Representations
Koizumi, Yuma, Zen, Heiga, Karita, Shigeki, Ding, Yifan, Yatabe, Kohei, Morioka, Nobuyuki, Zhang, Yu, Han, Wei, Bapna, Ankur, Bacchiani, Michiel
Speech restoration (SR) is a task of converting degraded speech signals into high-quality ones. In this study, we propose a robust SR model called Miipher, and apply Miipher to a new SR application: increasing the amount of high-quality training data for speech generation by converting speech samples collected from the Web to studio-quality. To make our SR model robust against various degradation, we use (i) a speech representation extracted from w2v-BERT for the input feature, and (ii) a text representation extracted from transcripts via PnG-BERT as a linguistic conditioning feature. Experiments show that Miipher (i) is robust against various audio degradation and (ii) enable us to train a high-quality text-to-speech (TTS) model from restored speech samples collected from the Web. Audio samples are available at our demo page: google.github.io/df-conformer/miipher/
WaveFit: An Iterative and Non-autoregressive Neural Vocoder based on Fixed-Point Iteration
Koizumi, Yuma, Yatabe, Kohei, Zen, Heiga, Bacchiani, Michiel
Denoising diffusion probabilistic models (DDPMs) and generative adversarial networks (GANs) are popular generative models for neural vocoders. The DDPMs and GANs can be characterized by the iterative denoising framework and adversarial training, respectively. This study proposes a fast and high-quality neural vocoder called \textit{WaveFit}, which integrates the essence of GANs into a DDPM-like iterative framework based on fixed-point iteration. WaveFit iteratively denoises an input signal, and trains a deep neural network (DNN) for minimizing an adversarial loss calculated from intermediate outputs at all iterations. Subjective (side-by-side) listening tests showed no statistically significant differences in naturalness between human natural speech and those synthesized by WaveFit with five iterations. Furthermore, the inference speed of WaveFit was more than 240 times faster than WaveRNN. Audio demos are available at \url{google.github.io/df-conformer/wavefit/}.
State-of-the-art Speech Recognition With Sequence-to-Sequence Models
Chiu, Chung-Cheng, Sainath, Tara N., Wu, Yonghui, Prabhavalkar, Rohit, Nguyen, Patrick, Chen, Zhifeng, Kannan, Anjuli, Weiss, Ron J., Rao, Kanishka, Gonina, Ekaterina, Jaitly, Navdeep, Li, Bo, Chorowski, Jan, Bacchiani, Michiel
Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In previous work, we have shown that such architectures are comparable to state-of-theart ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We also introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12, 500 hour voice search task, we find that the proposed changes improve the WER from 9.2% to 5.6%, while the best conventional system achieves 6.7%; on a dictation task our model achieves a WER of 4.1% compared to 5% for the conventional system.