Babu, Arun
Toward Joint Language Modeling for Speech Units and Text
Chou, Ju-Chieh, Chien, Chung-Ming, Hsu, Wei-Ning, Livescu, Karen, Babu, Arun, Conneau, Alexis, Baevski, Alexei, Auli, Michael
Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model's learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability.
Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning
Yu, Lili, Shi, Bowen, Pasunuru, Ramakanth, Muller, Benjamin, Golovneva, Olga, Wang, Tianlu, Babu, Arun, Tang, Binh, Karrer, Brian, Sheynin, Shelly, Ross, Candace, Polyak, Adam, Howes, Russell, Sharma, Vasu, Xu, Puxin, Tamoyan, Hovhannes, Ashual, Oron, Singer, Uriel, Li, Shang-Wen, Zhang, Susan, James, Richard, Ghosh, Gargi, Taigman, Yaniv, Fazel-Zarandi, Maryam, Celikyilmaz, Asli, Zettlemoyer, Luke, Aghajanyan, Armen
We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.
Efficient Self-supervised Learning with Contextualized Target Representations for Vision, Speech and Language
Baevski, Alexei, Babu, Arun, Hsu, Wei-Ning, Auli, Michael
Current self-supervised learning algorithms are often modality-specific and require large amounts of computational resources. To address these issues, we increase the training efficiency of data2vec, a learning objective that generalizes across several modalities. We do not encode masked tokens, use a fast convolutional decoder and amortize the effort to build teacher representations. data2vec 2.0 benefits from the rich contextualized target representations introduced in data2vec which enable a fast self-supervised learner. Experiments on ImageNet-1K image classification show that data2vec 2.0 matches the accuracy of Masked Autoencoders in 16.4x lower pre-training time, on Librispeech speech recognition it performs as well as wav2vec 2.0 in 10.6x less time, and on GLUE natural language understanding it matches a retrained RoBERTa model in half the time. Trading some speed for accuracy results in ImageNet-1K top-1 accuracy of 86.8\% with a ViT-L model trained for 150 epochs.
Scaling Speech Technology to 1,000+ Languages
Pratap, Vineel, Tjandra, Andros, Shi, Bowen, Tomasello, Paden, Babu, Arun, Kundu, Sayani, Elkahky, Ali, Ni, Zhaoheng, Vyas, Apoorv, Fazel-Zarandi, Maryam, Baevski, Alexei, Adi, Yossi, Zhang, Xiaohui, Hsu, Wei-Ning, Conneau, Alexis, Auli, Michael
Expanding the language coverage of speech technology has the potential to improve access to information for many more people. However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000 languages spoken around the world. The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task. The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models for the same number of languages, as well as a language identification model for 4,017 languages. Experiments show that our multilingual speech recognition model more than halves the word error rate of Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data.