Babak Hassibi
Learning without the Phase: Regularized PhaseMax Achieves Optimal Sample Complexity
Fariborz Salehi, Ehsan Abbasi, Babak Hassibi
's are the rows of a known measurement matrix A, is a classical problem known as phase retrieval. This problem arises when measuring the phase is costly or altogether infeasible. In many applications in machine learning, signal processing, statistics, etc., the underlying signal has certain structure (sparse, low-rank, finite alphabet, etc.), opening of up the possibility of recovering x
The Impact of Regularization on High-dimensional Logistic Regression
Fariborz Salehi, Ehsan Abbasi, Babak Hassibi
Logistic regression is commonly used for modeling dichotomous outcomes. In the classical setting, where the number of observations is much larger than the number of parameters, properties of the maximum likelihood estimator in logistic regression are well understood. Recently, Sur and Candes [26] have studied logistic regression in the high-dimensional regime, where the number of observations and parameters are comparable, and show, among other things, that the maximum likelihood estimator is biased. In the high-dimensional regime the underlying parameter vector is often structured (sparse, block-sparse, finite-alphabet, etc.) and so in this paper we study regularized logistic regression (RLR), where a convex regularizer that encourages the desired structure is added to the negative of the log-likelihood function. An advantage of RLR is that it allows parameter recovery even for instances where the (unconstrained) maximum likelihood estimate does not exist. We provide a precise analysis of the performance of RLR via the solution of a system of six nonlinear equations, through which any performance metric of interest (mean, mean-squared error, probability of support recovery, etc.) can be explicitly computed.
The Impact of Regularization on High-dimensional Logistic Regression
Fariborz Salehi, Ehsan Abbasi, Babak Hassibi
Logistic regression is commonly used for modeling dichotomous outcomes. In the classical setting, where the number of observations is much larger than the number of parameters, properties of the maximum likelihood estimator in logistic regression are well understood. Recently, Sur and Candes [26] have studied logistic regression in the high-dimensional regime, where the number of observations and parameters are comparable, and show, among other things, that the maximum likelihood estimator is biased. In the high-dimensional regime the underlying parameter vector is often structured (sparse, block-sparse, finite-alphabet, etc.) and so in this paper we study regularized logistic regression (RLR), where a convex regularizer that encourages the desired structure is added to the negative of the log-likelihood function. An advantage of RLR is that it allows parameter recovery even for instances where the (unconstrained) maximum likelihood estimate does not exist. We provide a precise analysis of the performance of RLR via the solution of a system of six nonlinear equations, through which any performance metric of interest (mean, mean-squared error, probability of support recovery, etc.) can be explicitly computed.
Crowdsourced Clustering: Querying Edges vs Triangles
Ramya Korlakai Vinayak, Babak Hassibi
We consider the task of clustering items using answers from non-expert crowd workers. In such cases, the workers are often not able to label the items directly, however, it is reasonable to assume that they can compare items and judge whether they are similar or not. An important question is what queries to make, and we compare two types: random edge queries, where a pair of items is revealed, and random triangles, where a triple is. Since it is far too expensive to query all possible edges and/or triangles, we need to work with partial observations subject to a fixed query budget constraint. When a generative model for the data is available (and we consider a few of these) we determine the cost of a query by its entropy; when such models do not exist we use the average response time per query of the workers as a surrogate for the cost. In addition to theoretical justification, through several simulations and experiments on two real data sets on Amazon Mechanical Turk, we empirically demonstrate that, for a fixed budget, triangle queries uniformly outperform edge queries. Even though, in contrast to edge queries, triangle queries reveal dependent edges, they provide more reliable edges and, for a fixed budget, many more of them. We also provide a sufficient condition on the number of observations, edge densities inside and outside the clusters and the minimum cluster size required for the exact recovery of the true adjacency matrix via triangle queries using a convex optimization-based clustering algorithm.
Fundamental Limits of Budget-Fidelity Trade-off in Label Crowdsourcing
Farshad Lahouti, Babak Hassibi
Digital crowdsourcing (CS) is a modern approach to perform certain large projects using small contributions of a large crowd. In CS, a taskmaster typically breaks down the project into small batches of tasks and assigns them to so-called workers with imperfect skill levels. The crowdsourcer then collects and analyzes the results for inference and serving the purpose of the project. In this work, the CS problem, as a human-in-the-loop computation problem, is modeled and analyzed in an information theoretic rate-distortion framework. The purpose is to identify the ultimate fidelity that one can achieve by any form of query from the crowd and any decoding (inference) algorithm with a given budget. The results are established by a joint source channel (de)coding scheme, which represent the query scheme and inference, over parallel noisy channels, which model workers with imperfect skill levels. We also present and analyze a query scheme dubbed k-ary incidence coding and study optimized query pricing in this setting.