Babaeizadeh, Mohammad
StoryBench: A Multifaceted Benchmark for Continuous Story Visualization
Bugliarello, Emanuele, Moraldo, Hernan, Villegas, Ruben, Babaeizadeh, Mohammad, Saffar, Mohammad Taghi, Zhang, Han, Erhan, Dumitru, Ferrari, Vittorio, Kindermans, Pieter-Jan, Voigtlaender, Paul
Generating video stories from text prompts is a complex task. In addition to having high visual quality, videos need to realistically adhere to a sequence of text prompts whilst being consistent throughout the frames. Creating a benchmark for video generation requires data annotated over time, which contrasts with the single caption used often in video datasets. To fill this gap, we collect comprehensive human annotations on three existing datasets, and introduce StoryBench: a new, challenging multi-task benchmark to reliably evaluate forthcoming text-to-video models. Our benchmark includes three video generation tasks of increasing difficulty: action execution, where the next action must be generated starting from a conditioning video; story continuation, where a sequence of actions must be executed starting from a conditioning video; and story generation, where a video must be generated from only text prompts. We evaluate small yet strong text-to-video baselines, and show the benefits of training on story-like data algorithmically generated from existing video captions. Finally, we establish guidelines for human evaluation of video stories, and reaffirm the need of better automatic metrics for video generation. StoryBench aims at encouraging future research efforts in this exciting new area. Work completed during an internship at Google.
Model-Based Reinforcement Learning for Atari
Kaiser, Lukasz, Babaeizadeh, Mohammad, Milos, Piotr, Osinski, Blazej, Campbell, Roy H, Czechowski, Konrad, Erhan, Dumitru, Finn, Chelsea, Kozakowski, Piotr, Levine, Sergey, Sepassi, Ryan, Tucker, George, Michalewski, Henryk
Model-free reinforcement learning (RL) can be used to learn effective policies for complex tasks, such as Atari games, even from image observations. However, this typically requires very large amounts of interaction -- substantially more, in fact, than a human would need to learn the same games. How can people learn so quickly? Part of the answer may be that people can learn how the game works and predict which actions will lead to desirable outcomes. In this paper, we explore how video prediction models can similarly enable agents to solve Atari games with orders of magnitude fewer interactions than model-free methods. We describe Simulated Policy Learning (SimPLe), a complete model-based deep RL algorithm based on video prediction models and present a comparison of several model architectures, including a novel architecture that yields the best results in our setting. Our experiments evaluate SimPLe on a range of Atari games and achieve competitive results with only 100K interactions between the agent and the environment (400K frames), which corresponds to about two hours of real-time play.
VideoFlow: A Flow-Based Generative Model for Video
Kumar, Manoj, Babaeizadeh, Mohammad, Erhan, Dumitru, Finn, Chelsea, Levine, Sergey, Dinh, Laurent, Kingma, Durk
Generative models that can model and predict sequences of future events can, in principle, learn to capture complex real-world phenomena, such as physical interactions. In particular, learning predictive models of videos offers an especially appealing mechanism to enable a rich understanding of the physical world: videos of real-world interactions are plentiful and readily available, and a model that can predict future video frames can not only capture useful representations of the world, but can be useful in its own right, for problems such as model-based robotic control. However, a central challenge in video prediction is that the future is highly uncertain: a sequence of past observations of events can imply many possible futures. Although a number of recent works have studied probabilistic models that can represent uncertain futures, such models are either extremely expensive computationally (as in the case of pixel-level autoregressive models), or do not directly optimize the likelihood of the data. In this work, we propose a model for video prediction based on normalizing flows, which allows for direct optimization of the data likelihood, and produces high-quality stochastic predictions. To our knowledge, our work is the first to propose multi-frame video prediction with normalizing flows. We describe an approach for modeling the latent space dynamics, and demonstrate that flow-based generative models offer a viable and competitive approach to generative modeling of video.
Time Reversal as Self-Supervision
Nair, Suraj, Babaeizadeh, Mohammad, Finn, Chelsea, Levine, Sergey, Kumar, Vikash
Abstract--A longstanding challenge in robot learning for manipulation tasks has been the ability to generalize to varying initial conditions, diverse objects, and changing objectives. Learning based approaches have shown promise in producing robust policies, but require heavy supervision to efficiently learn precise control, especially from visual inputs. We propose a novel self-supervision technique that uses time-reversal to learn goals and provide a high level plan to reach them. In particular, we introduce the time-reversal model (TRM), a self-supervised model which explores outward from a set of goal states and learns to predict these trajectories in reverse. This provides a high level plan towards goals, allowing us to learn complex manipulation tasks with no demonstrations or exploration at test time. We test our method on the domain of assembly, specifically the mating of tetris-style block pairs. Using our method operating atop visual model predictive control, we are able to assemble tetris blocks on a physical robot using only uncalibrated RGB camera input, and generalize to unseen block pairs.
Toward Scalable Machine Learning and Data Mining: the Bioinformatics Case
Faghri, Faraz, Hashemi, Sayed Hadi, Babaeizadeh, Mohammad, Nalls, Mike A., Sinha, Saurabh, Campbell, Roy H.
In an effort to overcome the data deluge in computational biology and bioinformatics and to facilitate bioinformatics research in the era of big data, we identify some of the most influential algorithms that have been widely used in the bioinformatics community. These top data mining and machine learning algorithms cover classification, clustering, regression, graphical model-based learning, and dimensionality reduction. The goal of this study is to guide the focus of scalable computing experts in the endeavor of applying new storage and scalable computation designs to bioinformatics algorithms that merit their attention most, following the engineering maxim of "optimize the common case".
Fast Generation for Convolutional Autoregressive Models
Ramachandran, Prajit, Paine, Tom Le, Khorrami, Pooya, Babaeizadeh, Mohammad, Chang, Shiyu, Zhang, Yang, Hasegawa-Johnson, Mark A., Campbell, Roy H., Huang, Thomas S.
Convolutional autoregressive models have recently demonstrated state-of-the-art performance on a number of generation tasks. While fast, parallel training methods have been crucial for their success, generation is typically implemented in a na\"{i}ve fashion where redundant computations are unnecessarily repeated. This results in slow generation, making such models infeasible for production environments. In this work, we describe a method to speed up generation in convolutional autoregressive models. The key idea is to cache hidden states to avoid redundant computation. We apply our fast generation method to the Wavenet and PixelCNN++ models and achieve up to $21\times$ and $183\times$ speedups respectively.