Babadi, Amin
Suicidal Pedestrian: Generation of Safety-Critical Scenarios for Autonomous Vehicles
Yang, Yuhang, Kujanpaa, Kalle, Babadi, Amin, Pajarinen, Joni, Ilin, Alexander
Developing reliable autonomous driving algorithms poses challenges in testing, particularly when it comes to safety-critical traffic scenarios involving pedestrians. An open question is how to simulate rare events, not necessarily found in autonomous driving datasets or scripted simulations, but which can occur in testing, and, in the end may lead to severe pedestrian related accidents. This paper presents a method for designing a suicidal pedestrian agent within the CARLA simulator, enabling the automatic generation of traffic scenarios for testing safety of autonomous vehicles (AVs) in dangerous situations with pedestrians. The pedestrian is modeled as a reinforcement learning (RL) agent with two custom reward functions that allow the agent to either arbitrarily or with high velocity to collide with the AV. Instead of significantly constraining the initial locations and the pedestrian behavior, we allow the pedestrian and autonomous car to be placed anywhere in the environment and the pedestrian to roam freely to generate diverse scenarios. To assess the performance of the suicidal pedestrian and the target vehicle during testing, we propose three collision-oriented evaluation metrics. Experimental results involving two state-of-the-art autonomous driving algorithms trained end-to-end with imitation learning from sensor data demonstrate the effectiveness of the suicidal pedestrian in identifying decision errors made by autonomous vehicles controlled by the algorithms.
Continuous Monte Carlo Graph Search
Kujanpää, Kalle, Babadi, Amin, Zhao, Yi, Kannala, Juho, Ilin, Alexander, Pajarinen, Joni
In many complex sequential decision-making tasks, online planning is crucial for high performance. For efficient online planning, Monte Carlo Tree Search (MCTS) employs a principled mechanism for trading off exploration for exploitation. MCTS outperforms comparison methods in many discrete decision-making domains such as Go, Chess, and Shogi. Following, extensions of MCTS to continuous domains have been proposed. However, the inherent high branching factor and the resulting explosion of search tree size are limiting existing methods. To address this problem, we propose Continuous Monte Carlo Graph Search (CMCGS), a novel extension of MCTS to online planning in environments with continuous state and action spaces. CMCGS takes advantage of the insight that, during planning, sharing the same action policy between several states can yield high performance. To implement this idea, at each time step, CMCGS clusters similar states into a limited number of stochastic action bandit nodes, which produce a layered directed graph instead of an MCTS search tree. Experimental evaluation shows that CMCGS outperforms comparable planning methods in several complex continuous DeepMind Control Suite benchmarks and a 2D navigation task with limited sample budgets. Furthermore, CMCGS can be parallelized to scale up and it outperforms the Cross-Entropy Method (CEM) in continuous control with learned dynamics models.
Learning Task-Agnostic Action Spaces for Movement Optimization
Babadi, Amin, van de Panne, Michiel, Liu, C. Karen, Hämäläinen, Perttu
We propose a novel method for exploring the dynamics of physically based animated characters, and learning a task-agnostic action space that makes movement optimization easier. Like several previous papers, we parameterize actions as target states, and learn a short-horizon goal-conditioned low-level control policy that drives the agent's state towards the targets. Our novel contribution is that with our exploration data, we are able to learn the low-level policy in a generic manner and without any reference movement data. Trained once for each agent or simulation environment, the policy improves the efficiency of optimizing both trajectories and high-level policies across multiple tasks and optimization algorithms. We also contribute novel visualizations that show how using target states as actions makes optimized trajectories more robust to disturbances; this manifests as wider optima that are easy to find. Due to its simplicity and generality, our proposed approach should provide a building block that can improve a large variety of movement optimization methods and applications.
PPO-CMA: Proximal Policy Optimization with Covariance Matrix Adaptation
Hämäläinen, Perttu, Babadi, Amin, Ma, Xiaoxiao, Lehtinen, Jaakko
Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.