Ba, Yunhao
WeatherProof: Leveraging Language Guidance for Semantic Segmentation in Adverse Weather
Gella, Blake, Zhang, Howard, Upadhyay, Rishi, Chang, Tiffany, Wei, Nathan, Waliman, Matthew, Ba, Yunhao, de Melo, Celso, Wong, Alex, Kadambi, Achuta
We propose a method to infer semantic segmentation maps from images captured under adverse weather conditions. We begin by examining existing models on images degraded by weather conditions such as rain, fog, or snow, and found that they exhibit a large performance drop as compared to those captured under clear weather. To control for changes in scene structures, we propose WeatherProof, the first semantic segmentation dataset with accurate clear and adverse weather image pairs that share an underlying scene. Through this dataset, we analyze the error modes in existing models and found that they were sensitive to the highly complex combination of different weather effects induced on the image during capture. To improve robustness, we propose a way to use language as guidance by identifying contributions of adverse weather conditions and injecting that as "side information". Models trained using our language guidance exhibit performance gains by up to 10.2% in mIoU on WeatherProof, up to 8.44% in mIoU on the widely used ACDC dataset compared to standard training techniques, and up to 6.21% in mIoU on the ACDC dataset as compared to previous SOTA methods.
GT-Rain Single Image Deraining Challenge Report
Zhang, Howard, Ba, Yunhao, Yang, Ethan, Upadhyay, Rishi, Wong, Alex, Kadambi, Achuta, Guo, Yun, Xiao, Xueyao, Wang, Xiaoxiong, Li, Yi, Chang, Yi, Yan, Luxin, Zheng, Chaochao, Wang, Luping, Liu, Bin, Khowaja, Sunder Ali, Yoon, Jiseok, Lee, Ik-Hyun, Zhang, Zhao, Wei, Yanyan, Ren, Jiahuan, Zhao, Suiyi, Zheng, Huan
This report reviews the results of the GT-Rain challenge on single image deraining at the UG2+ workshop at CVPR 2023. The aim of this competition is to study the rainy weather phenomenon in real world scenarios, provide a novel real world rainy image dataset, and to spark innovative ideas that will further the development of single image deraining methods on real images. Submissions were trained on the GT-Rain dataset and evaluated on an extension of the dataset consisting of 15 additional scenes. Scenes in GT-Rain are comprised of real rainy image and ground truth image captured moments after the rain had stopped. 275 participants were registered in the challenge and 55 competed in the final testing phase.
MIME: Minority Inclusion for Majority Group Enhancement of AI Performance
Chari, Pradyumna, Ba, Yunhao, Athreya, Shreeram, Kadambi, Achuta
Several papers have rightly included minority groups in artificial intelligence (AI) training data to improve test inference for minority groups and/or society-at-large. A society-at-large consists of both minority and majority stakeholders. A common misconception is that minority inclusion does not increase performance for majority groups alone. In this paper, we make the surprising finding that including minority samples can improve test error for the majority group. In other words, minority group inclusion leads to majority group enhancements (MIME) in performance. A theoretical existence proof of the MIME effect is presented and found to be consistent with experimental results on six different datasets.
Blending Diverse Physical Priors with Neural Networks
Ba, Yunhao, Zhao, Guangyuan, Kadambi, Achuta
Machine learning in context of physical systems merits a re-examination of the learning strategy. In addition to data, one can leverage a vast library of physical prior models (e.g. kinematics, fluid flow, etc) to perform more robust inference. The nascent sub-field of \emph{physics-based learning} (PBL) studies the blending of neural networks with physical priors. While previous PBL algorithms have been applied successfully to specific tasks, it is hard to generalize existing PBL methods to a wide range of physics-based problems. Such generalization would require an architecture that can adapt to variations in the correctness of the physics, or in the quality of training data. No such architecture exists. In this paper, we aim to generalize PBL, by making a first attempt to bring neural architecture search (NAS) to the realm of PBL. We introduce a new method known as physics-based neural architecture search (PhysicsNAS) that is a top-performer across a diverse range of quality in the physical model and the dataset.